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* Chapter 1

Everyone who has seen the ocean has watched the waves on its

surface rise and fall. A gravitational restoring force acts on the

vertically displaced water resulting in this near-harmonic motion. In O ..

the same manner, gravitational waves can be excited within the ocean's

fluid volume wherever there is any change in mass density, either

continuous or abrupt.

The spatial and temporal scales associated with this

"internal" gravity wave motion are much different from those

associated with particle motion caused by sound. Typical vertical

displacements due to internal waves are 10-50 m while horizontal

displacements are about 1 km and periods of oscillation run typically

from about 20 minutes to 12 hours. Particle displacements due to

sound propagation in the ocean are dependent on the source strength,

of course, but are generally on the order of Angstroms or microns

while the period of a 100 Hz acoustic signal is five orders of

magnitude smaller than the shortest internal wave periods! The effect

of the internal wave motion is to move huge quantities of water very

slowly, thus rearranging somewhat the sound speed field through which _..

acoustic waves must travel.

.,.- .°. . o. -
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What, then, is the cumulative effect of these sound speed

fluctuations on the acoustic field? The quest for the answer to this

question really began in 1972 when Garrett and Munk 2 introduced a

model describing the statistical properties of the sound speed fluctu-

ations due to internal waves. This model was improved and refined by

subseauent theoretical and experimental work; for ? stiLriYV of

work, the reader is referred to Vol. 80 (1975) of the Journai ot

3
Geophysical Research, which has been described by Briscoe as a kind

of birthday party to celebrate the field's growing up.

Armed with a statistical description of the medium, a group

of scientists (the "JASON" group) employed Feynman path-integral tech-

niques to describe propagation of acoustic rays through the internal

wave field. A detailed exposition of this work has been published in

45monograph and a summary has been presented by Flatte.5

The JASON theory is actually two theories; one is valid in

4the region of very weak sound speed fluctuations and "short" (-10 m)

ranges (the "unsaturated" region) and the other is valid in the region ..

of stronger fluctuations or much longer (-106 m) ranges (the "satura-

ted" region). Consider acoustic propagation through a deterministic

environment; sound travels from source to receiver along a set of

eigenrays. Now turn on the fluctuations. In the unsaturated region, -

each of these equilibrium rays is still dominant although each of

these rays and its associated ray tube is perturbed by the random

sound speed inhomogeneities. In the saturated region, each ray has

2



been split into many "microrays" created by the fluctuations and

separated by more than a vertical correlation length. The path-

integral techniques describe acoustic propagation in each of these -

asymptotic regions; they are not expected to apply in the intermediate

region where each ray has begun to split into microrays but these

microrays are still correlated. Some corrections to the asymptotic

theories have been made but the region of validity is not complete.

Experiment seems to validate most of the predictions of the

JASON work in the regions where the theory is expected to apply.

However, our understanding of the problem is still incomplete. As

mentioned above, the behavior of the acoustic field at intermediate
ranges is not totally understood. The path-integral techniques are ____

invalid near caustics. Also, anisotropy and inhomogeneity in the sound

speed fluctuations cause the Markov approximation used in the theory

to break down at some lower limit on acoustic frequency. Although

measures of this breakdown frequency (generally around 100 Hz) are

available, the question remains as to what significant effect, if any,

the internal waves can have on the acoustic field at very low acoustic

frequencies.

The problem of low frequency (v ; 100 Hz) acoustic

propagation is particularly important since measurements of volume

absorption in the oceanic waveguide typically involve precisely this

type of transmission over ranges of many hundreds of kilometers.

The need for a low frequency theory of acoustic propagation _

through an internal wave field led some researchers 6 8 to con- .

3
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sider the effects of random sound speed inhomogeneities on acoustic

normal modes. Certainly there are serious computational disadvantages

to a normal mode description in the deep ocean; however, such a

description is not only valid at low frequencies but also is free of

the problems of caustics and the difficulties connected with the

boundary between the saturated and unsaturated regions described

above. In addition, normal modes offer a framework to describe energy

transfer into the ocean bottom while the ray theory considered by the

JASON work does not allow this bottom interaction. Hence, hoping to

enhance the results already obtained through path-integral tech-

niques, we turn to the stochastic differential equations describing -

acoustic normal mode propagation in a random environment.

The field of stochastic differential equations is a

relatively new realm in mathematics; only 15 of the 81 references in .-

Arnold's book, Stochastic Differential Equations: Theory and O

Applications, were published before 1960. Therefore, it has often

been necessary for physicists to knead their problems into somewhat

different forms, with varying degrees of physical justifiability, in

order to make progress using a recently developed mathematical

arsenal. Specifically, the theory of stochastic partial differential

equations is not well developed; true artistry is often necessary to •

reduce a physical problem to one dimension.

The problem of an acoustic wave propagation through an .
'

internal wave field is a prime example of an unsavory state of 0

affairs. The fact that we may consider the sound speed field "frozen"

4
.9 .
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in time with respect to the acoustic field eliminates the temporal

coordinate, but there are three spatial coordinates to contend with. -

The sound speed fluctuations are stationary in the horizontal plane --

but nonstationary in depth so that homogeneity cannot be invoked to

reduce the dimensionality of the problems. Also, the fact that the

horizontal correlation distance of the sound speed fluctuations is

about 10 km while the acoustic wavelength is on the order of meters

leads one to believe that the system may not be Markov!

In order to gain some knowledge of the system, Kohler and

Papanicolaou8 simplified the problem considerably by investigating

acoustic ,ormal mode propagation of a single tone through a

cylindrically symmetric sound speed field. That is, the ocean sound -

speed knows where the sound source has been deployed in order to rise

and fall symmetrically around it. The sound speed field was also

assumed to be stationary in range. In this work, Kohler and

8Papanicolaou laid the groundwork for the present study. They

10
employed a theory which they introduced three years earlier in order

to derive formal propagation equations, although they did not consider

a particular spectrum of sound speed fluctuations (if they had, they

might have found some trouble arising from reversing a limit and an

integral). The main contribution of their work was the introduction of

rigorous s:aling techniques by which it is possible to approximate the

system by a Markov diffusion process (Appendix C) along with an

estimate of the error based on the "smallness parameter" c which

characterizes the strength of the sound speed fluctuations.

5 -9
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About the same time, Dozier and Tappert 6 7 published two

landmark papers which considered the effects of internal waves on

time-harmonic acoustic normal modes. Using a nonrigorous perturbation

technique, they were able to corroborate the formal coupled mode

equations of Kohler and Papanicolaou. In addition, they found that

the scattering coefficients, independent of range, represented con-

tributions from the internal wave spectrum at a horizontal wave number

equal to the difference of two acoustic normal mode wave numbers.

In the course of their work, Dozier and Tappert choose a

direction of propagation and integrate the spectrum of the fluctu-

ations over the wave number transverse to that direction. They then

assume thdt this modified spectrum, with its corresponding sound speed --

fluctuations, can be used with a cylindrically symmetric stochastic

Helmholtz equation to describe acoustic propagation. Although these

manipulations reduce the system to a soluble one-dimensional problem,

the attempt to localize a normal mode description is disturbing. In

consequence of this method any transverse fluctuations in the acoustic

field are eliminated not only on average but also for each realiza-

tion, even though the sound speed fluctuations themselves vary

randomly in azimuth.

Crucial to their derivation of the coupled mode equations is

the assumption of "random phases". That is, it is assumed that cor-

relations between different normal modes do not persist beyond a cor-

relation length of the sound speed fluctuations. It will be shown

6
S
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in the present study that when azimuthal fluctuations in the acoustic

field are artificially prohibited but random phases are not assumed,

significant correlation between different depth modes can persist for

many (-3 25) correlation lengths, but that the form of the coupled

mode equations obtained by Dozier and Tappert is nevertheless re-

covered. In addition, we use the full two-dimensional spectrum of

sound speed fluctuations with the result that the scattering coef-

ficients represent contributions from the internal wave spectrum at a

horizontal vector wave number having a component in the radial direc-

tion equal to the difference of two acoustic normal mode wave numbers.

The average energy flux is found to be radial at long ranges.

Nevertheless, in spite of the various simplifications and

assumptions, the Dozier-Tappert work is important in that it was the

first to consider the effects of an internal wave field on acoustic

normal modes and to offer the concept of resonance scattering in the

context of acoustic propagation.

A major consideration of this dissertation is the effect of

azimuthal fluctuations on the average energy flux. For each realiza-

tion, the random depth mode amplitudes are functions of range and

azimuth. Each mode amplitude is expressed in terms of a set of

azimuthal modes in order to reduce the system to one dimension. Using 0

the scaling techniques of Papanicolaou and Kohler,1 0 the system is

approximated by a Markov diffusion process and moments of the random

mode amplitudes are calculated using the corresponding Fokker-Planck

7
.. . ..- -
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equation. The random acoustic pressure is shown to be stationary in

the horizontal plane for an azimuthally symmetric source. The coupled

equations for the autocorrelation function of the mode amplitudes

derived by suppressing azimuthal acoustic fluctuations are still valid

as long as each range function is interpreted as a sum over all the

azimuthal modes. The correlation between different modes, however,

decreases with range somewhat more quickly than in the azimuthally

symmetric case. Again, the average energy flux becomes radial at long

ranges.

The order in which the material contained here is presented

is as follows. Chapter 2 reviews the thermodynamics of the ocean and

presents arguments for including all of the internal wave effects on

acoustic propagation in the equation of state. Chapter 3 discusses

models of the deterministic and random components for the sound speed

and the assumptions contained therein. Chapter 4 reviews determin-

istic acoustic normal mode theory and discusses the acoustic Poynting

vector. Chapter 5 investigates the effects of internal waves on an

(artificially) cylindrically symmetric acoustic field. Many of the

concepts which would be obscured in a more complex calculation are

presented here. Chapter 6 considers acoustic propagation through a

random internal wave field where now the effects of azimuthal fluctua-

tions in the acoustic field are taken into account. Chapter 7

presents numerical calculation of scattering coefficients for compar-

ison with the Dozier-Tappert results. Chapter 8 is a detailed summary

of the results.

8
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Chapter 2

Most discussions of acoustics, and underwater acoustics in

particular, begin with the wave equation for the acoustic pressure.

it is not clear that this is a legitimate procedure in the present

study since we consider two effects, the acoustic pressure and the

motion of the water due to gravity, or internal, waves, which may

interact. Of course, they do interact; otherwise, this dissertation

would have no point! However, if we can assume that the scales of

particle motion caused by the sound differ greatly from those caused

by internal waves, we may assume that internal waves affect sound

propagation only through the equation of state. We therefore begin

our discussion with the equations of motion for ocean water particles

due to the combined sound and internal wave fields. Much of the

following thermodynamic description follows Eckart. 11,12

Seawater is here treated as a solution of a single compound

in pure water. The internal energy c as a function of specific

volume v, entropy TI, and salinity S can be used to calculate the

pressure p, absolute temperature T, and chemical potential u1; i.e.,

p

T

s(2.1)

9
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Small increments of these quantities are, then,

I .. i i -

6P -X .

6T -Y Z L (2.2)

-K L M S

Some elements of the square matrix in Eq. (2.2) are related

to familiar response functions:

-x= 2 2- -. X = c _. .

r ~y 2 (y_1-pl..

a

Z T/Cvs (2.3)

where

p.

P I/v = mass density,

C defines the sound speed,
9P S

CS specific heat at constant volume and salinity,

CS =s soecific heat at constant pressure and salinity,

. = Cps/Cvs, and

a . ± coefficient of thermal exoansion.

10
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0
The other elements are related to the various heats of diffusion:

H -T.a.) L..C L (2.4)
T v aTv T vS

It is convenient to introduce here the coefficient of saline

1 lap\contraction b - -j and to note thatp

HTp HTv + CvS(!!)(..)(25

The hydrodynamic equations appropriate to an ocean are

Du
p b + p(fxuL) + Vp - = V-A + F (2.6a)

Do + pv.u 0(2.6b)

pT Ln+ V-h (26c

Pt + G , (2.6d)

where



D/Dt - /At+u.V = total time, or convective, derivative,

u = particle velocity,

g gk, the gravitational acceleration,

f twice the earth's angular velocity of rotation,

A = stress tensor of molecular viscosity (for an explicit

definition see Refs. 12 and 13),

F = result of all other forces such as, for example, an

oscillating piston,

G = the heat generated by irreversible processes,

h = heat flux, and

s = salinity flux.

Note that k points vertically downward.

If we assume that the particle motion is small, we may

linearize these equations by writing each quantity as a sum of its

time-dependent and its static values. Static values will be

subscripted with zeroes; time-dependent quantities will be subscripted

with ones. Therefore, p=po+pl, U=uj, F=F1, p=o+P, etc.

Equations (2.6) are ranked in successive approximations, the zero-

order set being the case when no time-dependent quantities are

considered, the first-order set where products of zero- and first-

order quantities are considered but not products of first-order

quantities, and so on. Relations between zero-order quantities may

be exploited in the first-order equations, thus preserving the ranking

of the approximation. _•

12



7 7 77-777

In order to obtain the zero-order relations, we neglect A

and all time derivatives. We assume that S does not vary with

latitude; thus, all zero-order quantities depend only on depth. Thus

Vpo P0
9-  (2.7) 5

and

P o -2 -0+  Y oS +  K as (2.8) -

Combining these, we define

2P 0 o Ko--
N(z) -=- ,Y

0o 0

( T 9,tn p a s
{aT°I n zv S (2.9) ,° •?'0 - 0 0 + -00 0)

The quantity N(z), called the Brunt-Vais~l or buoyancy

frequency, has an important physical meaning. Consider a small mass

of fluid displaced adiabatically a small vertical distance from its

zero-order position and then allowed to move freely. The fluid

element will oscillate about its original position with frequency N,

provided that N is real. If N2 is negative, the fluid motion is

unstable; a slight perturbation will cause wide departures from the
11

fluid element's original position. 14 16

It is very useful to consider the concept of a "potential

gradient"; that is, the measured gradient minus what the gradient

13
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0

would be in a static, isohaline, isentropic ocean. These gradients

will be subscripted with P. For example,

0

Thus, it is the potential density gradient which determines the

ocean's static stability, i.e.,

N2(z) (211
PO P7

Similarly

(aT\ T T0  DT

\az a az a z _7S ac
0 00 0 0

The first-order linearized hydrodynamic equations are

p0 =_ -~ + VP1 + P. Vx1  - ?A F +(2.13a) -

t+ 7. - o (2.13b)

+ ~(" -7l ~ G'h) ,(2.13c)

a + U -s 1 . , (2.13d)
at -1 -

14



with appropriate boundary conditions. In many cases, it is more

convenient to employ the following form of Eqs. (2.13):

atc [v1+rk]p + N zkw+ fxu , (2.14a)

p+Co [v-rk]. u =,(2.14b)

T.0

where a Nz

P p1 oc) 1 2
C

(z) 1/2 Lfo P0V0( (P c0 )i + - S

C 1/2

(%I/ (7*A+F)

2 0 0 azo0o

00

15
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Boundary conditions are now

n.U 0 (2.15a)

on rigid surfaces and

- -U (2.15b)at c -
S

at the surface of the ocean. We see that when 9;=O, W(Poco )-1/2 is

simply the vertical displacement of the fluid particle.

If we consider a region of the ocean far from heat and

pressure sources, we may take 7 and 9 in Eqs. (2.14-2.15) to be -

zero. Then, the solutions of these equations may be time harmonic;

time derivatives are replaced by the factor -iw, where w is the

angular frequency. Actually, a general limited solution to these

equations as they stand will be a superposition of these time harmonic

solutions of the free equations.

It should be remembered that P, W, and U are first-order

quantities; r and N are zero-order quantities. Therefore, to first

order, it seems that the hydrodynamic equations should decouple into a

set describing only the internal waves and another set describing the

acoustic propagation.

To support this assertion, we consider an instructively

simple situation where S, co, and N are constant everywhere and F is

zero. This situation is physically impossible for the ocean but not

16. *.- , . "



so bad for the atmosphere (which, of course, doesn't have salinity).

our source terms are also taken to be zero. We do not neglect

rotation, but we do specialize it by making our system a flat layer of

thickness H rotating about a vertical axis with angular velocity

f=-fIk. The solutions to the field Eqs. (2.14) are

aP =FP,(z) e&' , (2.16a)

W =FW,(z) eliwt ,(2.16b)

where

( ;2+2~= (2.17)

(co is the separation constant) and

dP1(Z) 22
% d - (' -w )W(z) (2.18a)

2c2
c0 dz 2 1- 2 , (2.18b)

with boundary conditions -Pco=gW at z=O, and W=O at z=H. Then,

W Wo si[ (Z-] ,(2.19a)

0~

1 Po Cos z -H] (2.19b)

17



where 5, the vertical wave number, is related to frequency w and to

horizontal wave number a by

B2 2, 2 2 2 , 2 2 2 2 .

co(W _f + (N2-W)( -f2-a Co) 0 (2.20)
0 0

On the other hand, the free surface boundary condition gives

N2  2•
- = g6 tan3H (2.21)

A graph of the simultaneous solution to Eqs. (2.20) and
17 222.2

(2.21) is shown in Fig. 1. Case A is N <a co+f ; case B is
N > C0 +f2 In either case, each solution to Eq. (2.21) intersects

the solution to Eq. (2.20) twice, resulting in two sets of normal

modes for the system. The dispersion relation for these modes is

17
shown in Fig. 2. The gravitational (internal wave) modes are

confined between the rotational and buoyancy frequencies whereas the

acoustic modes have frequencies much higher than N. For the sake of

clarity, the spacing of the acoustic modes has been greatly reduced

and the slopes of the other curves greatly increased in Fig. 2.

What happens in the ocean is this: internal waves move great

quantities of water up and down (and also back and forth, but this is

irrelevant to sound propagation) at velocities slow enough to essen-

tially maintain the static entropy and salinity gradients. The phase

velocities of these internal waves are sufficiently smaller than the

sound speed that this motion can be considered incompressible; the

18
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FIGURE 1
DIAGRAM FOR THE SIMULTANEOUS SOLUTION OF THE

SIMULTANEOUS EQUATIONS (2.20) AND (2.21).
HERE, X (OH) 2, y = w2H/g, 21-12 /9, AND yf f2H.

(FIGURE TAKEN FROM REF. 17).
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FIGURE 2
DIAGNOSTIC DIAGRAM FOR THE GENERAL CASE OF

AN OCEAN OF CONSTANT DEPTH AND CONSTANT N, F, c.
(FIGURE TAKEN FROM REF. 17).
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frequencies are so low as to make gravitation and the earth's rotation

important. Sound waves are transmitted along at velocities so high

that particles under the influence of internal waves seem "frozen".

The sound frequencies are so high that gravitation and Coriolis

effects affect sound only in the fact that the medium through which it

is propagating has been rearranged somewhat. Also, the heat and salt

contained in a volume of water displaced by a sound wave don't have

time to diffuse into the new environment before the volume element is

pushed back again. In the linear regime, sound is assumed to consist

strictly of compression waves.

The total particle motion is therefore the sum of rota-

tional, incompressible motion due to the internal waves and

irrotational, compressible motion due to sound. Each of these effects

is assumed to independently satisfy the linearized hydrodynamic equa-

tions; the effect of the internal waves upon the sound is manifested - .

through the equation of state. That is, the sound speed is considered

to possess a small perturbation due to the displacement of isodensity

surfaces by the internal waves.

We may now feel comfortable in deriving the acoustic wave

equation in the usual manner, secure in believing internal wave

effects to be contained in the sound speed, with the result

2
72 1 ~72p - - = source terms. (2.22)

c

21
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Chapter 3

The ocean sound speed is a function of horizontal position

r, depth z, and time t. We take as our model

c(r,z,t) : c(z) + 6c(r,z,t) , (3.1)

where T(z) is the mean sound speed profile and 6c(r,z,t) describes the

sound speed fluctuations due to internal waves. In general, c(z) will

vary with horizontal position and time. However, these changes are

usually very slow compared with the rate of variation in 6c; c(z) - "

mainly depends on depth.

A. The Mean (Deterministic) Sound Speed Profile

The mean sound speed profile for the deep ocean is

characterized by a sound channel. Due to a negative temperature

gradient (z) decreases as depth from the surface increases. This

effect is eventually balanced by the weight of the water and c(z)

reaches a minimum co at the channel axis depth zo. For z>zo, the

sound speed increases with depth due to increasing pressure in the

nearly isothermal deep ocean.

Details of this picture vary from ocean to ocean (e.g.,

Urick 18). For example cO may be found very near the surface in cold

Arctic regions, resulting in a sound speed profile which essentially

increases throughout the entire water layer. Nearer the equator, in

cloudy, windy environments, turbulent mixing may result in an

22
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isothermal layer just below the ocean surface. Within this layer, the

sound speed gradient vanishes twice, once near the surface at the base

of the "mixed layer" and again deep in-the ocean at depth zo.

We need not consider these details for the study at hand.

We do require a model of Z(z) which reasonably describes the sound

speed profile for much of the world's deep ocean environment and has

its basis in physical reality. Therefore, the "canonical" sound speed

19profile derived by Munk is chosen.

Munk's derivation of the sound speed profile is reproduced

in Appendix A. Briefly, realistic assumed dependences on temperature

and salinity by the sound speed are combined with an exponentially

decreasing stratification profile, which is "perhaps the most

19_
intrinsic property of the abyssal oceans" (Fig. 3, Munk; also,

Refs.2, 20-21). By "stratification" is meant only that the density

changes with depth. The word does not always imply layers but applies

to continuous density gradients as well. Although the assumption of

exponential stratification is really invalid near the surface (see

references cited above; also Eckart2 2 ) we follow iunk and everybody

else in ignoring this. The fluid is statically stable when the

buoyancy frequency

N~z 1 0 eZ/B -
: e N (3.2)

-0

is real. In Eq, (3.2), B is the scale depth of the stratification, g

is the acceleration due to gravity, and ( -) is the potential

density gradient.

23
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The sound speed channel appears quite naturally at a depth

very near the scale depth of the buoyancy frequency. The analytical

expression for T(z) is

cz =c(zo ) exp (, +e-Z-_ (3.3)

where

2 (ZZ) (3.4)

. O

and

l 2 BYA  (3.5)

The quantity yA is the fractional sound velocity gradient in

an adiabatic isohaline ocean. For real oceans,

c(z) 0 Coil + £(A+e--I (3.6)

which is the well-known Munk (canonical) sound speed profile.

B. The Random Sound Speed Perturbation

The sound speed at position x (as measured in a three-

dimensional coordinate system) and time t is assumed to vary from its

mean value-E(z) by the slow advection of an isodensity surface by

internal waves. The advection is slow enough to be quasistatic;

25
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therefore we may write the sound speed fluctuation at position x and

time t,

kcxt (x,t) (3.7) _

where C is the vertical particle displacement due to internal waves.

Our problem is now to describe . There are two popular ways of doing

this. One method is to make whatever assumptions are necessary to

make the hydrodynamic equations describing the internal wave field

tractable and use the resulting theoretical description. The second

is to take the description of the internal wave field directly from

the experimental results without explaining in detail the mechanisms

causing the internal wave motion. In the end, we shall choose the

second approach, but it is worthwhile to consider the first. The

usual approach is to assume that the hydrodynamic equations may be

linearized and to neglect shear coupling. The experimental evidence

concerning these assumptions will be discussed later. The linearized -

equations of motion are

?u.

o - + P (fXui) Vp. + igk 

,1.+ W .0 - .
+ = 0u= 0 (3.8)

;-1
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S

where the subscript i denotes internal wave (as opposed to acoustic)

effects and where wi= is the vertical component of ui, the particle

velocity due to the internal waves. Given Eqs. (3.8), one can show, :

N2 2 2for N>>g /C

2 2

(V wi)+ N;W Vwi)+ (*V2w.
H1

a 2wi+ f. 7 Oi2 + f.(f.V) + f (fx..- °o F 2-i  atxui)

(3.9)

where V2 (a 2 + (see Appendix B). At this point we must make

some approximations in order to make this equation tractable. The

23
"traditional approximation", so called by Eckart because all

previous treatments of the problem agreed to make it, consists of

neglecting products of wi and fH' the horizontal component of f. This

approximation is often justifiable. However, as Eckart points out,

neglect of this term without also neglecting similar products of fH

and the other velocity components robs the equations of motion of

their self-adjointness. The nature of the field equations is thus

completely altered and radically different phenomena will be

described. Therefore, if wifH is to be neglected, so must the other

terms involving fH* This is clearly invalid near the equator.

However, if we adopt the traditional approximation,

27
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22S2 a12 f
a (V 2wi)+ N 2 2V wi) + f2z

-N2z)[ ~ +w f~ (3.10)

Plane wave solutions to Eq. (3.10) have the form

Wi= WWz e~ (a -r-Qt) (3.11)

where (dropping the subscript on f)

W(z) + CX2 [ 2 (Z) - Q 2W(z) .N2() WZ (3.12)

The right side of Eq. (3.12) may be neglected since the ratio of the _

first to the second derivative of W(z) is no larger than the depth of

242

N()H < 5xlO- (3.13)

The quantity W(z) is subject to boundary conditions at the

surface (z=0) and at the ocean floor (z=H). W(H) is generally

28



0

taken to be zero since the ocean floor is considered to be imperme-

able. Also, since the internal waves in the ocean produce only very

small vertical displacements of the free surface, 25 W(O) is generally

taken to be zero, too.

Given the boundary conditions and a particular horizontal

wave number a, the solutions of Eq. (3.10) form a discrete set of

eigenfunctions, each corresponding to an eigenfrequency EJa" For real

a, these eigenfrequencies will lie in the interval f< n j-< max N(z).

A vertically displaced fluid element will oscillate vertically with

the buoyancy frequency N(z). If the displacement is not vertical, the

restoring force is less and the fluid element's motion will be

elliptical with a reduced frequency. At frequencies just slightly

higher than f, the particles will travel in nearly horizontal,

circular orbits, the velocity vector rotating anticyclonically

(Fig. 4; for more detail see Munk I and Phillips26).

For an exponentially decreasing buoyancy frequency

/B 2N(z)=N e-zB, the solutions to Eq. (3.10) are exact, and given by

W (C, z) a(y )  J -a (") Ya(Y) (314)

where S

a -fl(o2)_ 1 2 ' (3.15)

y(z) - a N(z) (3.16)

29
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iV is a normalization constant and J Y~ are Bessel functions of the
a$ a

first and second kind. The eigenfrequencies Qj, are determined by

the upper boundary condition W.(oL,z)=O at z=O.
3

Now we may represent the vertical displacement of an

isodensity surface by a superposition of internal wave modes,27

Si(Q. r-~. t) 6

(x,t) =I daGj(2)W (a,z) e -- (3.17)

3

where the quantities G.(a) are complex Gaussian random variables

satisfying

<Gjb)_ _> :0
= 0"

<G ( _)G (' > P (a) 6 (a(3.18 ) .
3-3 3- -- 3

Before discussing the form of the spectrum P.(a), it is3- .-

necessary to say a few words about the above analysis. The derivation

of Eq. (3.9) neglects several non-negligible effects: forcing, shear

dissipation, nonlinear coupling. 28-29  It is doubtful that well-

defined internal wave modes, other than perhaps the gravest mode, will

have time to establish themselves since vertical propagation times of -

the wave field are comparable to typical interaction times. This

suggests that it might be better to replace the discrete sum in

Eq. (3.17) by an integral over a continuous frequency range. '.

31
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Observations30-32 tend to support this latter notion; propagating

waves dominate at low frequencies, standing modes may dominate at the

highest frequencies (j-1),and both descriptions are adequate in

between. We therefore choose the second method to describe the

internal wave field, specifically the statistical description of C,

relying heavily on experimental work which will be referenced as we go

along. In this latter description, one assumes a random state with a

continuum of energy in frequency/wave number space. Here, a

difficulty arises in describing the spectrum since the medium is not

depth homogeneous. Nevertheless, the quantity

can be considered a local vertical wave number, in the WKBJ sense.

Thus, for Q<N(z), we can use Eq. (3.15) as the frequency/wave number

dispersion relation.

The continuum description used here was introduced by Garrett

and Munk, 2,33 modified by experiment, 32,34 '35 and streamlined by the

analytical work of Desaubies. 36

Any function of two (three-dimpnsional) positions x=(r,z)

and x'=(r',z) relative to some fixed coordinate system can be written

in terms of their average position (x'+x)/2 and their difference in

position Ax=(x-x,). The covariance <¢(r,z)r(r',z')> will depend on

the average position only through the average vertical position

32
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ri=(z+z')/2 (Ref. 37). Thus, if (0,5) is the wave number vector

conjugate to (r-r', y), where =z-z' I, we may write

<c(r,z)c(r',z')> : d doF?(a,q*n)cos.B eia(rr') ,  (3.20)

where F(c,5;n) is normalized such that

f dctdaF (c,3;n) = <C2(x-x',,)> = < 2(n)> (3.21)

If Fc (i, ;n) depends on the horizontal wave number only

through its magnitude (that is, if the medium is statistically

isotropic in the horizontal plane), we introduce

P (ca,B;n) 2racF (OC',;n ) (3.22)

such that

dPd dPr(,2;n):d ,3;n) J
2 < )f>d.2

(3.23) 0

If x=(r,',z) d x'=(r',(p',z') are two positions in some

fixed (cylindrical) coordinate system, we may write Eq. (3.20) in what

will prove to be a more convenient form:

=2 .< (r,z)(r',z')> d 2-:- d d a d (- , ) o .

X ei[rcs( -A)-r'cos (V ))1 (3.24)

33
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Finally, we may transform from (c,i3) space to (o,,Q) space

by use of the dispersion relation (3.19):

3~~ (Ct,2;) (c-Qc;n) =) P Ac)(? (3.25)

where, according to the references cited above Eq. (3.20),

2 2c (3.25a)
. 2-

.64f (Q 2_ f 211 (3.25b)

and

27-<,\Hl> (3.25c)

ensure that

f N0n

to order f/N(r,). In most cases of interest, min N(n ) f. The quantity

2~t( 22  1/2 anubrcaatiti oftebnwdh tisn

experimentally determined constant on the order of 10 - 10 h/rn.

The model presented in Eqs. (3.25) depends essentially on a

WKBJ approximate solution to Eq. (3.12) and is therefore not very good

340
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for frequencies near N(n) (Fig. 5; taken from Ref. 35). In

particular, the spectrum shows a pronounced hump just below the

buoyancy frequency, followed by a sharp cutoff.

This hump is also found in the internal wave experiment

(IWEX) data 32,34 and in previous measurements by Voorhis 38 and

Gould.2 Vertically propagating waves with frequency 2 are reflected

at the turning depth (where -= N(z)); each of these wavefunctions has

therefore an inflection point at that depth. Waves which

destructively interfere in shallower water are therefore locked in
40

phase near the turning depth. A Langer method of treating the

internal wave field 40'41 has been shown to describe the observed

frequency spectrum very well (Fig. 6). However, most of the energy

in the internal waves is contained in frequencies near f (Eq. 3.24b

has a sharp peak at 7=f1). Thus the simpler WKBJ description is

adequate for our purposes.

The description is not yet complete; we still have to

specify< 2(n)>. Garrett and Munk 2 took the WKBJ solution to

Eq. (3.14) and "depth averaged over many wiggles" to find that, to

2 1some approximation, <- (n)>-N- (n). Whether or not this was a

legitimate procedure, the observations support this result. When the

autospectra were measured at different depths (data taken in IWEX) and

the "WKBJ normalized", i.e., multiplied by N(z)/N(Zr) where zr is a

reference depth, the variation in the spectral levels were reduced to -

35
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some 10% 32,34 (Fig. 7) except near the buoyancy frequency, where the

WKBJ approximation breaks down. Again, we ignore the region of

invalidity.

our model of the sound speed fluctuations is now finished.

Relating these sound speed fluctuations to the displacement

correlations gives

<6c(r, O,z)6c(r' (ol zl)> -4 (R) <2() N 2 (z) N 2(z)

1 3f Ct- Cos (Ct X (Q))
(c2 -cz 3

f'2  de~ia[rcos(9-~e)r cos((P-e)] + io[rcos( 0+0) ricos (01m+9)1](17

where we have used the fact that the integrand is even in a and where

() Q2 f)2 (3.28a)

2N0

- 7UB) (3.28b)

For completeness, we also give the spectrum in (3,2) space:
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P (i3Q) p P cdj,Q) Q) _ NB(B)O(,Q) (3.29)

where

2 2 (3. 30a)

and

( 2 ()2)1/2 3.%
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Chapter 4

In this chapter we review normal mode theory for a horizon-

tally stratified, deterministic ocean. In particular, we consider a

single water layer of depth H overlying a fluid half-space of constant

compressional velocity cp, which will be larger than the sound speed

minimum c0 . In the following analysis we consider a time-harmonic

source. It is therefore more convenient to describe sound propagation

by means of a velocity potential (nz) such that the particle

velocity u due to the acoustic wave is

u = ' (r,z) e- iWt (4.1)

In this formalism, the acoustic pressure p is simply related to , by

p -iw" e- (4.2)

where P is the mass density of the medium. Changes in density with

depth are closely related to changes in the sound speed, as we have

seen. Over the depth of the ocean, the sound speed and density change

very little compared with changes in p. Thus, we may write (from

Eq. (2.22)) a wave equation for

72 + 2 Q(r,z) (4.3)

41
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Q ~~-iwtwhere Q( , represents the source terms which are the right side

of Eq. (2.22). The simple source we shall consider is the time-

* harmonic point source

Q(r,z) = -4Qo6(x-2X) (4.4)

where xo is the position of the source. We shall choose our coordi-

nate system such that xoE(O zo); the water-air interface is at z=O.

In the deterministic medium chosen here, c varies only with

depth so that

p(r,z) : @(z)F(r) (4.5)

That is, there is no azimuthal dependence and Yk separates into a

product of functions which satisfy ordinary diiferential equations.

In particular

dz.+( - k :0 (4.6)

where k is the separation constant.

The boundary condition that the normal component of stress

be continuous across an interface implies that 34 is continuous across

such an interface and, since uz must also be continuous across an

interface, so is . Since the mass density of air is much smaller

42

".. 4 2. ". - --,

'..-*. - °



than that of water, we may set p(O)=O. Finally, only downgoing waves

are permitted as z-).i

If k is greater than -, we have a family of mode functions

which exponentially decay as z- . These modes correspond to waveguide

phenomena in which energy is trapped by total reflection.42  For k> w

the eigenvalue spectrum is discretely indexed43 and, if there are M

discrete eigenvalues,

W -k >k >kk
co- 1 2 i > kM c p (4.7)

The eigenfunction ci(z) corresponding to the ith discrete eigen-

value will have i zeroes in the depth interval [0,H).

For k- L., the spectrum of k is continuous. The modes
cp

corresponding to this continuous spectrum are generally neglected

because they are attenuated much more rapidly than the discrete modes,

due to both the geometric spreading and the volume absorption which is

generally smaller in the water layer than in any underlying layers.

It is a simple matter to show that the discrete eigenfunctions nn
44

are orthogonal. We have also normalized them so that

fdzQym = nm (4.8a)

0S

f dzo ,(k) (k') : (k-k ) (4.8b)' " "" "

o . ,0

43
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f dz n (k) 0 (4. 8c)

0 "0

Turning to the range functions, we find upon imposing a

Sommerfeld condition that

(r) 1)(kr) ,(4.9)

0

where H0)(kr) is a zeroth-order Hankel function of the first kind.

Thus

,p(r,z) : i~rQoP(Zo)I cn(Z)c*n(Zo)Hol)(knr)

P dk,(z,k),(Zok)H l)(kr) (4.10)

0 0

(For more detail see Ref. 45). From now on we follow established

practice in dropping the continuous contribution.

The normalization (Eq. 4.8) has a very specific physical

meaning. Suppose we have an arrangement of sources such that only one

of the discrete normal modes, say the nth mode, and none of the others

is excited. Then, the acoustic Poynting vector is given by
46
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(pu *+Uo) = =)-M

V (n(z)H~1)(knr))0 ~(z)H(2) (knr)] (4.11)

The integral of j over depth will give the amount of

intensity passing through a line at horizontal position r.

fdzi r -~ Q p (z )'(z )Wfdzp(z) (z) . (4.12)

0 fO'

If we define range functions

>Bn(Y')4 (z) ,(4.15)
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and the acoustic Poynting vector is

L r22 2 2

= r FQo1o(o) n(Zo)Q(z)n (z)
n 0

iw dmr dB)mi I n(Z)Pm(Z) (r) ( -> n( r)(_T_

n,m.

+ Z(Z) m LBn(r)B*(r) - B*(r)B(r)] (4.16)

The first term on the right hand side of Eq. (4.16) is the

sum of the intensities of the individual modes had each been excited

by itself; this term may therefore be called a "self" energy term.

The restricted sum represents the intermodal interference and is truly

an interaction term. Note that the self-energy term travels in a

purely radial direction; the intermodal interference is thus solely

and explicitly responsible for the bending of ray paths in the ocean.

46
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Chapter 5

Although the spectral density of the sound speed fluctu-

ations depends only on the magnitude of the horizontal wave number,

and not on its direction (Eq. 3.25), there will certainly be random

azimuthal fluctuations in the sound speed. These fluctuations will in

turn manifest themselves through azimuthal variations in the acoustic

pressure.

Previous studies in acoustic normal mode theory 6- 8 have

neglected this azimuthal variation in the acoustic field. Kohler and

Papanicolaou8 did not specifically consider internal waves as the

perturbation mechanism; they simply assumed a priori that the sound .

speed fluctuations did not depend on azimuth. Dozier and Tappert,6

who used the theoretically derived description of (x,L)(Eq. 3.17),

integrated the spectral density of the sound speed fluctuations along O -

the direction perpendicular to the line connecting the acoustic point

source and the receiver. Therefore, the function they employed as the

spectrum is actually a spectral density of wave number components in

the direction of propagation. By then approximating the function

W (c,z) in Eq. (3.17) by W (cx13z), where otis the component of a in
the direction of propagation, all vector dependence by on horizontal S

position is replaced by a scalar dependence on range. Let a2 be the

component ofac perpendicular toac1 The justification for the

replacement of W (rA,z) by Wj(aZ ) is that "this is a good

approximation for small a and for large L2 (and hence large a) the

47
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spectrum will be low anyway." The key words here are :'small" and

"large" since they immediately raise the question of comparison.

Clearly the comparison is between 1 and a2; this approximation is

good for a2 "small" compared with i' so we would expect the

approximation to be invalid near the peak of the spectrum for a, and

a2 both small and about the same size. Thus large errors in the

description of the acoustic field may or may not result.

The most disturbing effect of this assumption is to preclude

scattering of energy among the azimuthal acoustic modes; the energy is

constrained to remain in the azimuthally symnmetric mode. It is the

purpose of this chapter to discuss this case but without making any

assumptions about the relative sizes of I and a2. That is, we allow

azimuthal fluctuations in the sound speed but assume that azimuthal

coupling in the acoustic field may be neglected. We will thus employ

the continuum description of the internal wave field discussed in

Chapter 3. In addition, we do not make the "random phase approxima-

tion"; different depth modes may indeed be correlated. We do not

expect drastic departures from the results obtained by Dozier and

6
Tappert for this case where we have artificially prohibited azimuthal

coupling. Still, this simpler case is useful in examining many of the ..

physical phenomena, which may be somewhat obscured by the added

complexity of the azimuthal coupling, and in introducing the method of

analysis which will also be employed later when we do not ignore this

azimuthal coupling.
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A. The Coupled Mode Equations

Consider a flat slab of seawater of thickness H overlying a

substrate. The velocity potential Y(r,z,t) due to a time-harmonic

point source of angular frequency satisfies the scalar wave equation

(cylindrical coordinates)

1 ( ) 2 1 2 iwt"
r r r/ r +  Y ' 1 - 4 7O06(x- o) e (5.1)

7 2 2 o --

Because the sound speed fluctuations vary with time and range,

variables do not exactly separate. However, sound can travel a

distance equal to the correlation range of the fluctuations (about

10 km) in travel times on the order of 5-10 sec, much less than the

shortest period of the internal waves No 1 20 minutes. The

internal wave field is thus considered "frozen" with respect to the

acoustic field. We still have the range variations but since << 1
Ic

(see Eq. 3.1) we can expand Y in terms of the normal modes n (z) of

the deterministic sound speed profile t(z):

d d2n(z) 2
n + 2 +n(z) = k2 1(z) (5.2)

dz c2(z)

with the normalization (4.8a) and where the relative densities of air

and water allow us to take

* (0) = ( 5.3)
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If the substrate is rigid,

d n (H)n = 0 (5.4)

If, on the other hand, the substrate is an isovelocity fluid with

sound speed Cp,

(H) = N2 exp 2 - (H-z), (5.5)

where IV is determined by the normalization, is the water density

at z=H and Ps is the substrate density at z=H. We do not consider any

other boundary conditions in this study. Thus

M -iwt
T(r,z,t) = (r,z) e- i t = B(r)(Z) e (5.6)

nln
n~l /0

where the cylindrical spreading is made explicit.

By expanding our velocity potential in terms of discrete

normal modes, we neglect any continuous spectrum of modes. In the

r id bottom and pressure release bottom cases, there are an infinite

number of discrete modes. Where real bottom cases are concerned, M is

finite and there also exists the continuous spectrum of modes without *

which the normal mode set is not complete. The traditional assumption

that this continuous spectrum does not contribute greatly to the

500
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acoustic field is made here. Therefore, given that we know Bn (r) and

n(Z), Eq. (5.6) may not be strictly true but it is certainly a good

approximation. A more important error incurred by this approximation

occurs in the calculation of B n(r) since mode coupling into the

continuous spectrum, not considered here, may be an important loss

mechanism. Kohler and Papanicolaou8 have advanced a formalism to

account for this coupling and an application of this formalism to

sound speed fluctuations caused by internal waves would be interesting

future work.

All of the randomness in the acoustic field can now be found

in the range functions. Since 16c I<<cT,

2 2 6c-
61 I(5.7)

Employing the orthonormality of the depth functions, we find

2d B n(r)
n nk 2 1(n k+ )Bn(r) -

dr 4r

H
= 22 dzo(z), (z) 6c(r,z) (Z)Bm(r) (5.9)f(z) m m

Now we need to choose initial conditions for the B (r). If there were
n

no perturbations due to internal waves, the functions Bn (r) would be

the expression given by Eq. (4.14) multiplied by -/r (see Eq. 5.6).
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The farfield form of the Hankel function is accurate within 4% for

knr> 5 and the accuracy increases rapidly with argument. The

deviations from this functional form due to the internal waves is

definitely a long range effect; the correlation range of the internal

waves is about 10 km. 2'6'4 7 It is therefore convenient to separate

the ocean into two regions: a "nearfield" and a "farfield". The

nearfield will consist of the region interior to a cylindrical

boundary centered at the source with radius ro  0 (see Eq. 4.7).

Thus, even if kM 10-2 m -I  an order of magnitude smaller than any of

the eigenvalues we consider in this study, ro is still only about 10%

of the correlation range of the fluctuations. Within this region, we

assume that Bn(r) is given by Eq. (4.14) multiplied by ./-r.

In the farfield (r>r ), we neglect the 1/4r2 term since this .

20
is less than 1% of k2  B (r) will satisfy Eq. (5.8) with initial

n n

condition

2T i(k r -T/4 )
Bn(r°) i I-nQ

o p(zO)on(zO) e (5.9) . -

nS

In terms of forward and backward traveling waves

1 (n4r- iknr -ikr\
Bn(r) I e + A- en) (5.10)n fk-- n n

n
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The quantities A+ and A are complex random functions and we aren n

free to impose one relation between them. We choose

+ -- -. "0

iknr dA + -inr dAn
e e -0 (5.11)

so that Eq. (5.8) becomes

dA n 6c + i(k m-k n)r
-F kk dzp(Z) n(Z) *m(z ) (An e

n m o

-i(kn+km)r (5.12)n)
We now make the traditional "forward scattering

approximation" by assuming that the rapidly oscillating terms on the

right are statistically unimportant. Also called the "parabolic

approximation" because of the form of Eq. (5.12), this assumption

is equivalent to considering the small-angle scattering much more

likely than large vertical deflections. The evidence for this is

48 49
mainly experimental. At any rate, the size of (kn-km) is

generally several orders of magnitude smaller than (kn+km). It will

be shown, consistent with the results of Dozier and Tappert 6  and of
• 8

Kohler and Papanicolaou, that the effect of the argument in the

exponential is to pick out from the internal wave field scatterers

53
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whose horizontal vector wave numbers have a component the size of the

arguments of the exponentials in Eq. (5.12). Since the internal wave

spectrum is heavily weighted toward small horizontal wave numbers,

it is much easier to find scatterers with horizontal wave numbers on

the order of (k n-k m) than those with horizontal wave number (k n+km).

We therefore ignore the backscattered wave and (dropping the plus

sign, consistent with A- being initially zero),
n

dAn V A A m (5.13)

m

where

2 H  i(km-kn)r
V - . dzp(z) n(z) c (z) e mkn (5.14)

iknr
The quantity A is the envelope of the rapidly oscillating e term...

n If t

and would be constant in a deterministic medium. Since we estimate

that changes of order unity will occur in An over a range of about a

correlation range of the fluctuations (CR - 10 km) we have introduced

the smallness parameter e in order to make V nm of the same order as

i/CR. Our task now lies in the estimation of c.

From Eq. (5.14), if Vnm-i/CR, kn-km-</c o, and c- C , then

I~o
'f H dz ( z) -"" " R - o Zp) m c n (z )  (5.15) ". :=
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S

1

If we now replace (-) by the depth average of > and also

assume that the mode functions contribute very little for z7H,

~ H < 7) > (5.16)

Dozier and Tappert6 estimate <6c)2  >1/2 5.6xO -4  so

~ (4.04 xlO-4)w (5.17)

The pertubation theory is thus seen to be a low frequency theory

and should break down for - greater than a couple of hundred Hertz.

The expression (5.16) for E reveals that our smallness

parameter is really a product of two competing considerations, the

size of the sound speed fluctuations and also their coherence. The
[ B < [ c 2  1/2--- -;-

quantity (.J)<(4)z:> is an estimate of how big the fluctuations

are compared with the deterministic sound speed. Clearly, if a

sizable fraction of the sound speed is due to the fluctuations, then
WR

Eq. (5.7) will not be valid. On the other hand, the quantity - . ....Co

compares the correlation range of the sound speed fluctuations with

the acoustic wavelength. If, in the horizontal plane, the

characteristic length CR of the sound speed fluctuations is only a

couple of acoustic wavelengths long, the sound speed fluctuations are

not strongly correlated, and the acoustic wave will not travel very

far without being effectively sped up and slowed down several times by

the random effects on the phase. As the phases get more and more
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mixed up, the acoustic wave will, in a sense, forget where it has

been. On the other hand, a large CR means that internal wave effects

on acoustic propagation will be more systematic. These effects will

then tend to accumulate and knowledge of past history will be more

important than in a system where the sound speed fluctuations are the

same size but less correlated. Since the correlation range is many'

times the acoustic wavelength, this pertubation theory is valid only

because the sound speed fluctuations are so small.

B. The Statistical Behavior of the Range Functions

1. Interesting Moments

The randomness in the sound speed translates into

randomness in the velocity potential and any function f(p(r,z)) of the

velocity potential. We are interested in moments of these random

functions.

The quantity < f(r,z)> is definitely not the value of

1' in the absence of any perturbation. If Nature had simply added a

random term to the wave equation rather than multiplied it by the

state of the system, then first moments of quantities like the

acoustic pressure would indeed be their deterministic values, although

higher moments would be somewhat more complicated. However, the

nat ,re of our problem is explicitly multiplicative and it is thus of

some interest to calculate the first moment of f(r,z).
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In the perturbative method used here, we will calculate

moments up to lowest non-vanishing order in c. That is, any average

quantity can be ordered with c:

<f(;i)r~z)) > = f + F > + 2~ < f > + C < f > + *. ,(.3

where f is the initial value of f. If, for example, c <f >
01

3vanishes, we wi I Icalculate expressions for < f> accurate to 0(C )

Three quantities in which we are particularly interested are

the first moment of the pressure

< WDM < An (r) > n (z) ei(k nr-twt) , (5.19)

the second moment of the pressure

2 22M M <A A*> W z) (z) i(k -k )r
2 22n m n ni n ni<jp(r,z,t)l e (.0

and the first moment of the acoustic Poynting vector

<3 > - fr Kn (z) rm(Z) ( -2T)e <A nA* imk>ke
n,m nr M

d'; (z k- r )r
+ E:~~z Re <Ai . (5.21)(Z4(Z

(Z[M<A A > e 5.1
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Equations (5.19-5.21) are not exact expressions for

these quantities since we have already dropped some higher-order terms

in using Eq. (5.7). At any rate, we shall content ourselves with the

lowest-order expressions for < p>, <lp!2 >, and <j>. Thus, we

drop the term proportional to E in Eq. (5.21). In addition, since we

are considering farfield propagation, we also drop the 1/2r term.

Hence,

<j> I r(z) <IA >
- n

n

n,m n $m n n m

dm(Z) ei(k -k)r

(Z) Im <AnA* > e n..n dz nm
in,m n m

(5.22)

Note that again <j> is divided into self and

interaction energy terms. The autocorrelation of a mode with itself

represents the self-energy while interference effects are represented

by the energy contained in correlations between the modes.

2. Calculation of the Moments

The scaling method used here to estimate the moments of

A, where A (A1,A2,.. .AM)T, was introduced by Stratonovich.53  The
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literature extending this method to increasingly larger classes of

problems is vast (see Ref. 50 and references within); the version of

interest here was advanced by Papanicolaou and Kohler.1 0 Although the

work by Kohler and Papanicolaou8 and Kohler 51 seem to be the only

studies of the effects of internal waves on acoustic normal modes to

employ rigorous scaling methods, these methods have been used in com-

munications research for many years to describe wave propagation

through waveguides with random inhomogeneities (e.g., Refs. 52 and

53).

The method entails scaling the range coordinate by the size

of the fluctuations. In this scaled coordinate =:.2r, the effects of

the random fluctuations are squeezed together enough that the acoustic

field can be approximated by a Markov diffusion process (Appendix C)

with an error of 0(E& in the scaled coordinates, or 0( 3) in the
original coordinate system. There are two great advantages to this.

First, operational methods of treating Markov diffusion processes are

available. Second, we have an estimate for the error in terms of its

order in E.

This approximation will hold at long ranges for small values

of . Thus from Eq. (5.13)

- ,(5.23)

where iV(Vnm). As _-O, r-x witn =-'r fixed, momeqts of A conqerge to
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corresponding moments of a Mark-v diffusion process A0. We assume

that the sound speed fluctuations at two different ranges in the

unscaled coordinate system become increasingly independent in a

sufficiently strong sense (for a definition of "sufficiently strong"

see Papanicolaou and Kohler I0) as the range difference increases. We

also demand that 0,<c<E , , -:. finite but arbitrarilv large. The

limitation of a finite E -0ohas been lifted for stationary syste s.I

However, our system is not stationary in range, but in horizontal

position. Thus, we are confined to the weaker results of Papanicolaou
10

and Kohler. This does not present a problem since the ocean isn't

really infinite anyway.

The system (5.23) is completely analogous with the

example in Remark 2 of Papanicolaou and Kohler;1 0 if Co=c2ro,
0 0

y(AO, Ao*) is a function of the limiting Markov process A A and

0 0* 0* .
0 A *  = dAodA*D (A ,A ;:A 0 ;o) A A (5.24)

where p( 0 *.z 0 0*

where p(AA°*;cI 0,A ;:o) is the transition probability density of
o 0*finding the system in state AA at scaled range ' given initial

0t A * o* ( o* o e a b c.conditions A ,A ( o)=A0 ,A, then (A0 oA0 ) obeys a backward

equation, S

d-A0  A (5.25,.
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where

In Eq. (5.26), (-A~o) = and the inner product (A,3) is defined as

00

(A,) = tr(ABT) (5.27)

Since limits have been placed on the amplitude of the

acoustic signal (or else we can't start out with the linearized wave

equation), we assume that -(A°,A 0 * ) vanishes for A°,A °* larger than- -

some bounds. If we also assume that first and second derivatives witn .....

respect to modal amplitude exist, then the transition probability
/00* 0 0sm bons Ifw alo. asueta is1n eoddrvtvswt

density p~A A ;z A ,A ;7 c0) obeys a forward, or Fokker-Planck,

equation

S0* 0 0
= rA "A -A ;- pVOAoA ;c (5.23)

d O 0-

where,. is the formal adjoint of the operator defined in Eq. (5.26)0 ~O oi. 0 0) o* o,
and o(AAO* 'A°~,A ") = )(O_ Ao-A O ) .One additionaland o A ,A A ' -- O*.)
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caveat: in order for the scaling approximation to hold,,- must exist

independently of a o Papdnicolaou and Kohler 10 assumed this in order

to relax the condition that the fluctuating medium be stationary in

range. There is no real way to know whether X is really independent

of o for a nonstationary process without actually calculating it.

This is not a problem when we neglect azimuthal coupling in the

acoustic field, but we will need to remember this later when

azimuthal coupling is taken into account.

Equation (5.28) is very useful in calculating propagation

equations for the moments we need. Since we are approxi-

mating our real process by the limiting process, we will henceforth

drop the superscript on A. By multiplying Eq. (5.28) by Ak and

integrating over A and A , we get a propagation equation for < Ak >

(Appendix D):

d<Ak> k >

d = - (amk-ibmk) <Ak> (5.29)

m

where

amk 2 < > No dz dz'o(z)o(z')t (z) k(Z)

< (0)

c-2c- W) N(n) Jf3 a*

f coi cs (kfk f 2 ?) (
X~~~ do '. -CO. 5.0[ 2]

Jo [,cos , + (k, -k k)]
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and

<m 3(2 <2 (o)> rj of 4 Hf d zf dz'(z)Q(z')i(ZWtk(Z)
b V- m

mk 7 2(mfF)

xfde-kk + (k -k )e x
x f dea 2Cos 2 e + (k kk)

(5.31)

Hence, since c r =a, we find

-1(a -ib )(r-r )
<Ak(r)> =e M mk k <A (r )> (5.32)

k~ko0

The detai)s of this calculation are given in Appendix:. D.

In a similar manner we derive propagation equations for

the second moments:

A.G kA > k ~ amk+anik'+ibmk -ibrk <AkA*.> kWk

£ m (5.33)

so that

E alk+al~k +ibllk -ib ,,)(r-r 0
<A A*.(r) > =e(u1 k <A A (r )> k~k'

(5.34)
and
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2
d < IA,(r)I > / 2 2

2 am <I A(r)l > < <I Ak(r)I > . (5.35)

Even with the oscillatory terms, a m'0. Thus < Ak (r)> and

< AkAkI (r)> oscillate with an exponentially decreasing

envelope. The quantities <!, 2>aporoach an equilibrium value

2M 2 E
2JA > 1 ' <IA,(r )j > - 5.6

Hence, knowledge of Initial conditions is eventually wiped out as the

energy is equioartitioned among the modes. From Eq. (5.9)

E 2TrQo 2  2E o2 >1 (5.37)
m (

so that the equilibrium values for < p>, <lp(r,z,t) 2 > , and <Kj>

are

<P> 0(5.38)

2 (
2 2 (z)

< P~ > 2r (5.39)

and

< j > r
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Chapter 6

In Chapter 5, we studied sound propagation where each depth

mode was considered to have an azimuthally symmetric amplitude for

each realization. This directly contradicts the assumption of azi-

muthal variations in the sound speed profile. In this chapter, we

present a formalism for dealing with the azimuthal variations in the

sound field.

A. The Coupled Mode Equations

We consider the same system as in the previous chapter, a

flat slab of seawater of thickness H overlying a substrate. The veloc-

ity potential T(r,p,z,t) satisfies the scalar wave equation .

". Tr 
]r 17=77 77Q-7 -_) e ] (6.1)

The sound speed profile is again considered "frozen" and we again

expand T in terms of the deterministic depth modes n(z):

r z B (r,o )cr (z ) e (6 .2 )

l n~l .,/
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Thus

a 2 B (r Bo
n +( 2 + n

n+ Bn j (r' O) +

2 21 H dzo(z)4 Z ( z) ~.M(Z)B m(r,(p) . (6.3)

We assume that internal wave effects have negligibly

disturbed the acoustic field interior to a cylindrical boundary at

rL=lO/k M. Thus, Eq. (6.3) will describe the exterior problem with Bn (r 0

obtained from Eq. (4.14) multiplied by ./-r. Accordingly, we drop

the 1/4r2 and make the forward scattering approximation

ik r
Bn(r, ;O) - 1 Bn(r,(p) e ,(6.4)

nn

so that

+ 2 +s
n__n +

2 ic (,~ U nm B( ) , (6.5)
2n r 9rm

where

t~~nm 2t,,__ (z) ei mkn )r (6.6)
Evmpf dzjoIz>tn(z) 3-

Now we expand the forward scattered wave in terms of azimuthal modes

66



S

B +(r,) C (r) eiqqp (6.7) .n ~ nq
q =

Hence

dC .2 (Ff2 ,Tnq + i 7 C ei02TTP

-r =' S J ckpU e p - )m . (6.8)
2knr nnqmp

n mp

2 '

2kn r
Let C = A e ,thennq nq

dA

dr I Vmpnq Amp (6.9)
mp

where

1f 2T i(p-q)p P[i/q2 p2
V i d p -e exp ine (6.10)
mpnq TITnm 7F -"

and

B (ro) iknr 6.11)
A nq(r°) /kn e qo

Since several changes of variable have been made, it is useful to

exhibit these expressions in terms of basic functions,

Bn(r,(P) Anq exp k + q (6.12)
/k- qn
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n m 0

xexp .L (6.13)(p-)

B. Calculation of Moments

As in the last chapter we will be interested in expressions

for the average pressure,

n < (r)> 2z x i O W
<> WPn z) exp + IT

nq n ~
(6.14)

the second moment of the pressure,

2> 22 <A A* >2> W ng mp _ t (z)
In ~n nin,rn rknkm

xexp +(i (k1 -k, (6.15)p)

and the average energy flux,
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Jn(-> --Z) 2kr 2 + r n(Z) m(z)

nm~, n (M'-."
pqJ

2r x n(z) - Im <AAA ex m

nq mp +1 L(knkm)

M

Whe r il fi salndc arsrito that, sepceaqyidial sybeestric soe wl
andit ( it mus bitr tat q ap .

can a quaysapoiaeaafntion (69bortey~ti proc n hat is comletly - ~

(z~~:!ii I:::m < *>ep k)

I nq nq

Che r 5.l Wesalilcnarsrito that, qs beced a yidia lysmessthan soe wl

limit L where L is arbitrarily large. That is, we assume that we

can always approximate a delta function by a function that is highly

peaked at (P=O, the width of which is small compared with measured

azimuthal variations in the velocity potential, and that we obtain

.. . 6
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this function simply by adding together an adequate, but finite,

number of azimuthal modes.

Given this restriction, we proceed in a manner analogous to

the situation in Chapter 5. Rewriting Eq. (6.9),

dA
er = iE VA (6.17)

where A=(A ) and V=(Vp). With the scaling =E2 r, the processes
- nq mpnq

can be approximated by the Markov diffusion processes, Ao(a):

dp(AO,Ao;!A°,A*;ao ) *

do- -=.p(AOAo*;'a 1A=,A ;o), (6.18)

where,_ is the formal adjoint of

+T sTo' - _ -0

The form of V (Eq. 6.10) demands that our be nonzero (which it is)...._-.

in order to calculate~ but we will find.t to be idpnetof a0

~~~~when we're finished. In terms of the components of V and A (dropping ...ii
the superscripts), .-'.
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0 a+T ~-s
urn- dsl dt

rPpwq, Tto Ta f
m pn q 0CO

mpnq mp nq'> 6 n'm pq' I d A nqA n,)

mpnqA~~n MIP n7I>(6Tmp n q n qIi DA I Mp

ifip m p mo

+ <V~t jV*(1II S-----A in
I >A n'

mIp mp

+ <v*(t)v(s), An Ampnq np n q > n p q3m nq .(6.20)

Each of the four terms will contain an expression of the form

27 7 -,r/2I
Jdux Jdo J~' dPP(a,.);r) cos(c; X) eiAqcp ~iAq 4'

[ei~[cos()tcos~I~ + +ec~aos(P+6e-tcos(P'")I]

(6.21)

By transforming(P-?-(i(, ay." in the first integral andq0-0c-,,

P -ein the second integral, the expression (6.21) becomes

007T/ 2 2r T

aJ Jo dq Jp dp~'P(ci,-;r) cos(rX) e i'X(coS("q ei~cs
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e ei.q ( o+e) e iq ' ((o'+-) + e i' q(o ) e i~ -. ))

dC a 2T(d cos(-,)(.%q+Aq') da d d~Jd P( ,m?;) csaX i1

K e i(AC s  e -i tcosw ' ei( Lq(°+,q '° ) (6.22)

If Aq and Aq' are both even or both odd the integral is zero. Even

more is required: because P(a,C;n) is even in a and because the angle

integrals go from 0 to 27, the expression (6.22) is null unless

Aq=-Aq' (Appendix E). Hence,

im =If ds dt

myng Tto > JJ
m'p n'q' "10 ao

<V~- -.s) • ,>

'VW ) > P (* n 
nq

<mpnq'm'p n q I p,q-D'+qI(n--n-ipq . nq * qA ' (
' A ~ ~ mp MI01 -AMP rnp

+ <v(t) V*(s) q, 9 9 ,n
mpnq m' p n' q '-A I- n' A1 .p,q+p'-q' m n Ap --nq

+ <v*(t)v() > 6p ,q, A A Anq .(6.23)

.mpnq M p n q 'q+P ' Amp n nq"
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Another property commnon to the four terms in Eq. (6.18) is an

expression of the form

Sfdof ":+ d s 'dt P(ct,,;n) cos(c X) e i)Liscos4otCOcP )

.2 2

xeiAk Is eiAk e (i/2s)AQ, (i/2t )AQ2  (-4

where, for example in the first term, Akl=(km-kn) Ak2=kikJ

-Q) and LQ~ .2 ~. Since Cc=~ cos(cIyx)Ll/a.*g

A2and AQ2 are constrained to be finite although arbitrarily large, c~

is finite (not zero) and less than T but otherwise arbitrary; and since

no function of Q2 multiplies T in the argument of an eXDonential, the

expression in (6.24) can be written (Appendix F)

ia4coJp d'A jl iosc X e

JTd dtP(caf2;q) eia~scos) tcos~pI ie~ ~ 2t

+ o(-7I)+ 0(0) (6.25)
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Since the terms o(lnT/T) and 0(1/T) will vanish in the limit T-, they

are henceforth omitted.

It is now possible to calculate some useful moments. In the

same manner as in the last chapter, a propagation equation for < Akj >

is obtained by multiplying Eq. (6.18) by Ak j and integrating by parts

once. Thus

d<kj>= <C(~ < (0) >Nof
do 2 24 k k*mpn F-7 km /kn kk

x< limy dp dp' dz Jdz' (Z>()1- s(Z' z')

Tt (Tg f (z')N~)J ~

00

742 11
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Now

e 2Tr 6 QO- (p' (6.27)
p=-L

where this is approximate because of the truncated sum. Further

manipulation yields

d <Akj > -W(P g ;2()

da 672 3kv7
mn m n k

7T/2 H H
Xi d~P dzf dz' n (Z) zy )~(

N2 (z) 2 (z ' N(n (n)2) /20(c c*

f + i(k-k )s e eds dteee<An>

Go fu 0(6.28)

Notice that the operator on < An*> does not depend on the indices of

any of the azimuthal modes. In fact, this operator is precisely the

one evaluated in Appendix D and

d <A >

-r m k kimk) < Aj 2 a>i (6.29)
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with amk and bmk given by Eqs. (5.30) and (5.31). Thus

- (amk-ibmk)(r-ro)

<Aki> = e m <Akj(r °0 > (6.30)

The derivation of Eq. (6.29) does not involve the initial

conditions; the operatorf is ourely a property of the medium and the

acoustic frequency. Hence, Eq. (6.30) holds for directional sources

as well as azimuthally symmetric sources; the first moment preserves

the original directionality of the source. This is expected since the

first moment does not give any information about energy transfer but

merely serves as an indication of how quickly knowledge of the initial

conditions is wiped out.

Information about the spatial distribution of energy is

obtained from the second moments <A A ,> (Appendix G). Here, it
nq n'q.

is necessary to return to the azimuthally symmetric source in order to -

make progress. We find first of all that the different azimuthal

modes are uncorrelated to lowest order in c; that is, we must have

q=q'. The random pressure p(r,,z,t) is thus stationary in the hori-

zontal plane.

The interesting quantities involving second moments are

2 2 2 n(z) n (z) i(k n-k n )r

n,n
I /T#n kn e.n n-

n n

_ 2AnqA ni,> expli - (6.n1)

and q
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< > PrIj ni. (Z) 2kr22.rlq k.n. n n 2k2 r

+ -(z)qiZ) Re A An* > exp knk )r + q2
r -/-knk n'n ' 2r k n  •n

d~ni
In - z Im Anq A > exp 2 (k-kn r + -Zz -7k k7 n'  'q n o 2r k n  kn ,

(6.32)

It is necessary here to make some estimate of our limit on S

q. The sound speed fluctuations have a correlation distance of about

10 km. Therefore, traversing an arc centered at the source, we expect

changes of order one in the acoustic field over an arclength of about S

a correlation distance. We thus take L=(27r)/CR; our limit

increases with range. Considering the radial term in < j>

2  2L 2- -3
<2 2 10 (6.33)

n2k2 , r  (k CR)

* Similarly 5

Li (1- 2, 10-3(k -k )r (.42r ( kn  , k no ( . 4
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2
n

Hence, we may drop the - term in < J > and can probably also drop
2k r

the extra oscillatory terms (6.34) in <lp 2 > and <j >, depending on

the size of (kn,-kn)r. In the estimates given above, kn -lO -  -0 , about

an order of magnitude smaller than what k n would be at an acoust 'c-

frequency of 100 Hz.

The quantities <A A > satisfy the following equation:A nq n'q

d<AnqAniq> n 1 ( + a ) + i( -bmn < A A*

do =- -2 Lamn'amn mn mn Anqn qM

+ dpq  Re <A A > (6.35)
mnm'n p m pp

whmmep..

where a and b are given by Eqs. (5.30) and (5.31). The sums over

m and m' are restricted such that kn -k7< kn-k m ,  and that (kn -km

have the same sign as (kn , ,) . The quantities dmnm'n' e given by

2 IH H '(Z () (z')m (z)I (z')
dPq l w - (f of 2( )kI)mk z' T n m k n
mnm T 0

,r16w4  do d.' n kk kk

z2 E2 d f3f

F 1 k - kCos E n ) kM ,1
Cos (q-p)cos- (_-'nkM, Cos c' -- 2n' , I .Jcos +(k 2V, 2)

(7.38)
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Note the similarity between dPmn and amn (Eq. 5.30). The

excitation of the azimuthal modes by the internal wave field, bleeding

energy out of the azimuthally symmetric mode, is explicit in

Eq. (6.35). Since all the energy is initially in the q=O mode, we see

from the form of d that <AnAn > = <A A*, ,_q > at all
mnm n' nq niq n,-q n,-

ranges. Therefore, < j > does not have a component in thel direction.

The moments < Anq A n q > are too many and too complicated to

evaluate numerically. However, we obtain much information about

2
energy flow without calculating each < A nqAnq >. Both < 1p > and

<j > contain terms

Wn = <lAnqi2> (6.37)

q

which obey a propagation equation,

dw 0n-2
2 a(w-w)(.8

dr amnWm-n (6.38)

This is precisely the same equation as that satisfied by <IAnI2 >

(Eq. 5.35) for the case when azimuthal coupling was neglected. The

self-energy is not affected by modal interference and so is simply the

sum of the self-energies contained in all the azimuthal modes. 0

The interference terms are another story. For On',

summation over q in Eq. (6.35) yields
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a 0

~ <AnqAn'q> = _ (amnamn) + i(bnbmnj <AnqA>
qqq m q .

(6.39)

which is analogous to Eq. (5.33) for the azimuthally symmetric case.

However, the expressions for <lPI 2> and <j> contain expressions

which oscillate more quickly than E <An A* >:
q qnq

< A>>ep 1 <AA
** q q nl

(6.40)

The effect of azimuthal coupling, then, enhances the decorrelation of

the depth modes so that the interaction terms go more quickly to zero.

This enhancement is probably not very big. Changes in phase -.

are much more rapid in range than in azimuth and a slight advancement

or retardation of a depth mode as it travels in range will play much 0

more havoc with acoustic interference than lateral deflections of

energy. Still, the consideration of the extra dimension can only

serve to increase randomness in the phases; this increase is repre-

sented by the additional oscillations in the correlations between

different depth modes.

In view of the above considerations, the average energy flux

is taken to be
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wp 2(z)w

<j > Trn n (r)

1, 2 n(* ~(z) I ReKAn A* >

hin,nI nl q

*exp~ [(k n-k n )r + r (+

- n Im( <AqA~ q> expT[(kk )r 2rq

nn q

(6.41)

With the quantity E/M defined in Chapter 5 (Eq. 5.37), the asymptotic

2values for < p(r,q',z,t) >, < p(r,p,z,t)j >, and <j> as r-,-o are

<P> 0 '(6.42)

]

<j'>2 > rW(Z2n r

<IpIk n k r>n (6.43)

and m

2 (6.44)

m

as in the azimuthally symmetric case.
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Chapter 7

In order to determine the rate of acoustic energy

redistribution by the internal waves and the decay rate of the

correlations between the different mode functions it is desirable to

numerically calculate the scattering coefficients ann,. Because of

the inequality (6.40), it is certainly necessary to know the decay

rate of < KAnqAn q> since, if this quantity be negligible, the
q2

interference terms in <IpI> and <_> may be neglected.

The scattering coefficients ann ' are given by

ann'= SW. <C2(o)> N0fn H dz H dz'(z)p(z')-...

0 0

x n(Z)nt(Z)Pn (z') n(z') 2z) 2  N(n) 2_ f1 2

S (z)C 2 (z' )N(n) NJ f

cos)s

f 112 cos9 c cos p ((7.1)?))2 2 2 ' (7.1)
(0.cos O+k )

where

Ak =knk n  (7.2).

Sz-z' 1 (7.3)
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1 (7.4)
ri (z+z )

t2 f2 112 (7.5)

and

2 2 (7.6)

The integration can be transformed by a change of

variable,

,N(n) 2 f2 11 AkjX (Q)~
f Cos cos~o t(N -_f 2 dX oo cis(GX)

0 (X 4K)(X +Q2

(7.7)

where

G k (7.8)

K =N(ri)/f ,(7.9)

2 t (N-f)o 2  + i(7.10)

Ak2

For Ak>ft, we can separate the denominator of the integrand

in (7.7) into partial fractions and evaluate the X integral exactly.

For Ak<ft, the par'ia' fraction expansion will introduce second-order
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poles at ft cos q'= Ak and then the principal value of the qp integral

will not exist. It is certainly true that the expression (7.1) for

ann, is valid uniformly in latitude and bandwidth parameter t, but one

must be careful that methods chosen to evaluate the integrals be

valid.

Evaluation of ann, is greatly simplified by assuming Ak>ft.

This limits the latitudes at which the following expressions apply,

but this does not prevent a useful computation. For t = 1.4 sec/m,

360
consistent with j,=3 in Desaubies' formalism, and a latitude of 30

ft = 1.02xlO 4 rad/m. At any rate, the expression (7.1) is as refined

as it can get without introducing some approximations. Numerical

evaluation of the quadruple integral for each pair of depth modes

would take a prohibitive amount of computer time, even with Monte-

Carlo techniques of integration. Since we do not expect the

qualitative behavior of the acoustic field to vary drastically with

latitude, we solve the problem for Ak>ft.

Performing the internal wave frequency integral, we find

(with N>>f; Appendix H)

ann 4w GO) (o)> dk nknf d dz'p(z)p(z') W n(z) n( ) :.:i~
nnTA k k n '

n n -A f

~n (Z'~ni~z)N2(zN2(z' -Ak2  tan- __
C2(z)-E2(z'ft 2  f2t2  ( ? f2t2)
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+ Tdcs(/GK eGK GK
0 dfcowK 2 e Ei(GK) - eGK Ei(-GK).

0f 2 2

f+2  2 \ 2 rGK 1KS1Cos2P e Ei(GK) + eGK Ei(-GK)"
\ Ak -

(l Cos Q Ei(GQ) + e Ei(-GQ)]
Z~k -  ,(7.11)

/0

where Ei(x) is the exponential integral.

Because the exponential integral diverges near =0, it is

interesting to note that as G-O the terms in curly brackets become -

-A~k2  tan-' ft + 2f dp c0sP (lnK-lnQ) if~t 2 2 0 t 2 f 2  )

ft Ak2 _ f 2t 2  /k 2  f2 t  Jo C __kcos2 2

(7.12)

a result which can also be obtained by integrating the integral (7.7)

with G=O (Appendix H).

The expression (7.11.) for ann, looks much more daunting than

it actually is. The (P integrand is actually very smooth and well-

behaved except near / =0. We can eliminate much repetition in the

numerical evaluation of ann, by noting that the expression (7.11) is

of the form

rH (H
a nn, dz dz'h(z)h(z')g( ,n) (7.13)

0 0
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which is equivalent to

[f H/2 f2I fH 2(H-n) 1
ann' 21 J dr d. d fd i d: h (n- ) /2h (n+ 2

(7.14)

After one more transformation /-

nn dn f +J dfl d]l h(rn-O)h(n+G)g(20,nj)
ann L0 '9d1H2 Jo

(7.15)

The scattering coefficients a nn' were calculated for n=1,

nl=2-6 at acoustic frequencies of 100 Hz and 50 Hz. We assume an

exponentially decreasing Brunt-VMs~lg frequency

N(z) N e-' (7.16)

where No 0.00524 rad/sec and B =1300 m. Correspondingly, a Munk

profile was chosen for the deterministic sound speed

c(Z) c c0[1 + c(A+e-1-)] (7.17)

2where co 1500 m/sec, c=0.737x10-

=2
A t (Z-z 0) (7.18)

and z0  1300 m. The inertial frequency was taken to be 0.727X10-

rad/sec (30 0latitude). The bandwidth parameter t was chosen to be
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p 36

1.4 sec/m, consistent with j,=3 in Desaubies '36 notation. Finally,

in order to compare our numerical results with those of Dozier and

Tappert,7 we choose the strength of the fluctuations such that

2 3
02 2 > '1o  2.12 s (7.19)

The acoustic wave numbers k and the corresponding depthn

modes 4n were calculated for a rigid bottom using the normal mode

54
model NEMESIS on a CYBER 171 computer. Briefly, boundary conditions

were set at z=O and z = H = 4000 m. Given an eigenvalue estimate,

Numerov's method is used to integrate the differential equation (5.2)

up from z=H to a match point and down to that match point from the

surface. The difference in these two solutions at the match point, if

not within the required tolerance, is then used to determine the next

eigenvalue estimate. Polynomial expressions involving previously

calculated eigenvalues are used as estimates for the next eigenvalue

so that convergence is usually achieved in five or six iterations.

Each eigenfunction n was evaluated every 5 m so that there were 801

mesh points in the 4000 m of water.

Because the (P integrand is so smooth and since the

'p integral must be evaluated for each (n ,) pair, the integral over

azimuth was found to be evaluated most efficiently using a 21 point

Gaussian tensor product formula,55 where I varies from 1 to 8 until
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Thc e , ired accuracy is achieved. The IMSL routine DMLIN 55 was ised to

-ffect this quadrature.

ine depth integia1s were evaluated by a two-dimensionil

trdpezoiddl rule which turned out to be surprisingly accurate. We

?St1!nate the calculated values of ann, to be within 5% and probably

3%.

The values of ann, calculdted in this study are presented in

rable 7.1 along with corresponding values calculated by Dozier and
7

Tappert. The two treatments are seen to agree fairly closely.
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TABLE 7.1

Calculation of aln

100 Hz

n a In'(Penland) a In'(Dozier-Tappert)

2 .704E-6 .945E-6

3 .140E-6 .208E-6

4 .525E-7 .760E-7

5 .264E-7 .321E-7

6 .155E-7 .147E-7

50 Hz

ni a1,n (Penland) a1,n (Dozier-Tapoert)

2 .246E-6 .294E-6

3 .548E-7 .710E-7

4 .21OE-7 .283E-7

5 .104E-7 .140E-7

6 .603E-8 .775E-8

7Note: Values from Dozier and Tappert have been divided by 2 to make

consistent with ours their definition of an.

nnS
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Chapter 8

Mode coupling induced by internal waves redistributes the

energy contained in an acoustic mode field. Energy confined to the

SOFAR channel will be spread over a much larger depth at long ranges.

This scattering causes the behavior of the sound field at

long ranges to become independent of source depth. A limit on the

depth information content of a cw signal which has propagated over a

long distance has therefore been established.

This study presents a theory which describes this

redistribution of energy. Path integral descriptions employed by

Flatte et al. 4 can be used to describe acoustic propagation through a

random medium at frequencies high enough to make normal mode tech-

niques invalid or, especially, intractable. However, unlike these

path integral techniques, this normal mode description is valid at low

frequencies (v ;, 100 Hz) and does not fall prey to problems of

caustics or to those connected with describing the acoustic field

between the saturated and unsaturated regions.

The scaling techniques introduced by Kohler and

Papanicolaou8 have been extended to include azimuthal fluctuations in

the sound speed field. Two cases are considered. In one case, the

azimuthal fluctuations in the acoustical field were ignored while
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retaining ich fluctuations in the sound speed. Thi

contradiction. This case was studied to see if the

resonance scattering in the Dozier-Tappert6'7 theory

without manipulating the spectrum in such a manner a

tal isotropy, an average property, on each realizati

speed. Also, we wished to investigate the necessity

assumption, i.e., <AnAn > =0 for nn', in obtaining

Eqs. (5.35). In addition, many concepts are elucida

would be obscured by the more complicated case.

In the other case, the azimuthal fluctuati

acoustic field are taken into account. The results

study are then compared with those of the previous,

symmetric situation.

The azimuthally symmetric case 4S presente

Chapter 5. The contradiction inherent in a sit~iatic

variations are permitted in the sound speed and not

field is explicit in the fact that the random pressL

obey an azimuthally symmetric Helmholtz equation wh

somehow "localized" (see the sentence immediately b(

Appendix D).

Contradictions notwithstanding, equations

amplitude <An> , for the autocorrelation function
n*

mode amplitude and for the correlations <AnAn,> b

ferent mode amplitudes (see Eqs. 5.6, 5.10-5.13) we
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The function < A > oscillates with an exponentially

decreasing envelope (Eq. 5.32). Hence, the mean acoustic pressure

becomes small at long ranges more quickly than would be implied by

simple cylindrical spreading.

The correlation functions < A nA > also oscillate with an

exponentially decreasing envelope (Eq. 5.34). This envelope decreases

more rapidly than that of the first moment; the e-folding range is

about half that of < A n>.

The autocorrelation function <JAn12 > of each mode is coupled

with those of all the other modes (Eq. 5.35). At long ranges all of

the functions <InI> approach the same equilibrium value; all depth

information about the source is therefore eventually lost.-

Because of the behavior of <IA 12 > and < A A*,> , the second
n n n

moment of the acoustic pressure <Ipf 2> asymptotically approaches an

incoherent sum of contributions from the the normal modes (Eq. 5.39).-

The vertical components of the average energy flux < i> decrease with

range so that the average energy flux at long ranges is essentially

radial (Eq. 5.40).

Even without the assumption of random phases, the form of

the coupled equations for <anI is the same as that derived by

6• 8

Dozier and Tappert. Of course, Kohler and Papanicolaou obtained the

same form without assuming random phases so this result is not at all

surprising. The form of Eqs. (5.32), (5.34), and (5.35) is a

consequence of approximating the system by a Markov diffusion process.

At any rate, we can check the consistency of assuming random phases
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with the Dozier-Tappert results since the exponentially decreasing

envelope of <A A*, > contains the same coefficients amn as in the

coupled equations for < IAn 12 ->.

Using the values for these quantities given in Table 1 of

Ref. 7 for a 100 Hz signal, we calculate-(aml+am 2) = 3.8 x 106 m
1 ,

m

corresponding to an e-folding length of 265.5 km, or about 25

correlation lengths. Of course, they only tabulated the results for

ten modes whereas there are generally hundreds of modes in the deep

(4000 m) ocean. Nevertheless, the scattering coefficients between

modes 1 and m decrease with the difference in mode number somewhat

more rapidly than Il-in "2  Thus, if we assume a very large number of

modes, we can overestimate F-(aml+am2) = 4-1 x 10
-6 m-1, corresponding

m

to an e-folding length of 231.2 km, or about 21 correlation lengths.

On the other hand, the gravest acoustic mode has only one nearest

neighbor, so we would expect it to be highly correlated with mode 2.

A similar calculation of E (am 5+am6) at 100 Hz gives an e-folding

length of about 67.2 km, or about 6.5 correlation lengths. Hence, we

expect the random phase approximation in the Dozier-Tappert theory to -

be most valid for mode numbers of middle range. Lower acoustic

frequencies will have longer e-folding lengths, varying roughly as w2

The calculation of the e-folding lengths was performed with

7scattering coefficients calculated by Dozier and Tappert using the

1975 Garrett-Munk spectrum. 33 Their spectrum differed from the one .:..

used in this study in that their horizontal wave number spectrum fell
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off more rapidly with a than the more recently derived spectrum used

in the analysis presented here. The 1975 Garrett-Munk spectrum33 was

revised with subsequent experiments32'34 ,35 and we have used the
9

revised version. On the other hand, their bandwidth parameter t is

about twice as large as that indicated by these experiments and we did

not obtain scattering coefficients drastically different from their

values (Table 7.1).

From the form of the scattering coefficients (Eqs. 5.30 and

5.31) it is clear that they represent contributions from the internal

wave field having a component of horizontal wave number in the radial

direction equal to the difference in acoustic horizontal wave numbers.

Dozier and Tappert6 interpreted their scattering coefficients as

representing contributions from the internal wave field with hori-

zontal wave numbers equal to the difference of the acoustic horizontal

wave numbers. However, since they integrated their two-dimensional

spectrum over transverse wave number, we may loosely identify the two

treatments as having consistent interpretations in this respect.

At any rate, one must always remember that this "resonance

coupling" is derived from the fact that both the horizontal wave

number spectrum used here and the modified spectrum used by Dozier and

Tappert possess poles of no higher order than one on the imaginary

axis. These poles did not contribute to the coupling coefficients amn

although the wavelength of the oscillation of <A A > was indeed

affected by their presence in the spectrum (Eq. 5.31). A second-order
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pole in the horizontal wave number spectrum would contribute

additional terms to amn and a third-order or higher-order pole could

call into question the approximation of the system (An) by a Markov

diffusion process.

Because the system (An) would be identically constant in a

noise-free environment and since the sound speed fluctuations are .

small, continuous, and have a reasonable correlation length, it is

reasonable to expect a Markov diffusion process to approximate A with

proper scaling. The assumption that such a process exists itself

places some restrictions on the form of the horizontal wave number

spectrum, but there is still a good deal of freedom in choosing an

expression to fit the measured data. Hence, although the expressions

for amn and bmn can be tristed to give accurate numerical results, we

should remember that the "resonance coupling" might have been modified

had we used another empirically derived spectrum which also fits well

the measured internal wave data but has different analytic properties.

With a thorougi understanding of the azimuthally symmetric

case, we now turn to the more realistic situation where azimuthal

fluctuations in the acoustic field are taken into account. Although

it is no longer necessary to "localize" the Helmholtz equation, we pay

for this consistency with a large increase in complexity. The details

of this calculation are presented in Chapter 6.

Many of the results found in the azimuthally symmetric case

have direct analogies in the more complicated study. Each mode

amplitude is a function of azimuth for each realization; each is
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therefore expressed in terms of a set of azimuthal modes. The average

pressure <p> due to a point source is precisely the same as in the

azimuthally symmetric case. However, we have more information: the

calculation of <p> does not depend on an azimuthally symmetric

source. We find that <p> preserves the directionality of the acous-

tic source and that each mode amplitude oscillates in range with an

exponentially decreasing envelope.

When the source is an azimuthally symmetric point source it

is found that the acoustic pressure is a stationary random process in

the horizontal plane. The autocorrelation function for the depth

modes have exactly the same behavior as in the azimuthally symmetric

case provided the range functions E <IAnq12 > are interpreted as a
q n

sum over all the azimuthal modes; energy is eventually equipartitioned

among all of the depth modes (compare Eqs. 5.35 and 6.38). As far as

the correlations between different depth modes are concerned, the

quantityv<K AA* > behaves as does <A A > in the azimuthallyq nq niq n n

symmetric case; it oscillates in range with an exponentially .-

decreasing envelope (Eq. 6.39). However, the interference terms in

<IpI 2> and < j > oscillate in q2; the quantity [2,AnqAnIq A*,>Imust

be regarded as an upper bound to these interference terms. Hence,

azimuthal scattering of energy tends to slightly enhance phase

randomization so that the interference terms are encouraged to decay.

2Therefore, the asymptotic behavior of <p>, <IpI >, and .-*

<j> is the same as in the case where azimuthal fluctuations in the

acoustic field are not considered. However, this asymptotic behavior
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* may be obtained more quickly than would be predicted by the simpler

calculation, though this difference in range is probably not

significant. Criteria for determining the significance of the

randomization enhancement are given in Chapter 6.

The result that energy is eventually equipartitioned among

all the depth modes is dependent upon the neglect of the continuous

spectrum. Unfortunately, the reasons usually cited as justification

for this neglect are precisely those mandating consideration of energy

coupling into this radiation spectrum: this continuum region is

attenuated far more rapidly than are the discrete depth modes.

8
- -Analytical work by Kohler and Papanicolaou indicates that

equipartition will not be attained if the continuum is included.

Clearly, further work is needed to establish the rate of such coupling

via the internal wave field.

Since the measure of volume absorption in seawater involves

propagation of an acoustic signal over very long ranges (10 10O kin),

internal waves will scatter energy out of the paths connecting a point

source with a point receiver. This may result in an anomalously high

volume "absorption." The theory presented here should be modified to

include the effects of absorption and a numerical calculation which

includes absorption should be performed.

Finally, one could apply the methods of Chapter 6 to modify

51Kohler's results for pulse propagation through a random environment
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0

a 0 i

for the special case that the random sound speed inhomogeneities be

due to internal waves. The only differences one would expect between L''

the Kohler theory as it stands and the modified Kohler theory would be

in the interference terms, which would be small at very long ranges,

and in the interpretation of the depth mode autocorrelation functions,

each of which would now be a sum of azimuthal modes.

O
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APPENDIX A 0

19Munk's derivation of the mean sound speed profile c(z) is

presented here.

Neglecting second-order terms, the fractional sound speed gradient

can be written

mc T
- _T S 3,p (A.l)" 0

C z -' + - + Y

Here, T is temperature, S is salinity, D is pressure.and ,, , are

constants. Similarly, the fractional density gradient is 0

1 ')) :-a( p + b -S(A.2)

where a is the coefficient of thermal expansion and b is the coefficient

of saline contraction. The subscript P denotes "potential gradient",
as explained in Chapter 2. Only the potential density gradient " 0

contributes to the stability of the water column; only the potential

sound speed gradient contributes to sound fluctuations associated with

internal waves. It is therefore convenient to introduce the quantity YA'

the fractional sound speed gradient in an isentropic, isohaline ocean. -

)'A -( + . (A.3) -*

Values for coefficients typical of conditions in the ocean are given in

Table A.l. However, it should be noted that a may vary by as much as 0
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TABLE A.1

Coefficients used in Derivation of Munk Profile

6 0

Values of 10 a in (*C)l at stated temneraturp~c and dooths

DepthT()
(in) 0 5 10 15 20J 25

0 51 107 158 204 245 283

1000 76 127 173 216 254 290S

2000 100 146 189 227 263 296

3000 122 164 203 238 271 302

4000 143 181 217 249 279 308

5000 161 197 229 258 286 314.

=3.16 x10 (OC)l az 0.13 x 10-3(00C 1,

b =0.80 x~ 10 (%o)1  6 =0.96 10- (% 0)-

=1.11 10o2  kmif1
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50% between the sea surface and the ocean floor. The value of a given 0

at the bottom of Table A.l represents a channel value for a.

The relative contributions of salt and (potential) temperature to
56

the stability of the ocean is introduced through the "Turner number" r,

b(-=~)
r a- (A.4)

We are now in a position to combine Eqs. (A.I-A.4) to obtain an

expression for C Using the Brunt-Vaisala frequency, S

N2 (z) = - ) (A.5)

we find

c -z + A 2 (A.6)

where

1 +(am-b-) r1
a 1 r (A.7)

The sound speed channel axis is located where vanishes, that is,

where

1/2

N(zo ) : (A.8)

For exponentially stratified oceans, 0

• I



-- /

N(z) No ez/B (A.9)

and

00

3Y A

For j 'surface extrapolated" value of (0) = No  3 h-  B 1.3 km

and -A= 1.14 x 10-2 km-1 (1 km of seawater exerts 99 hars of oressure),

b1rii

zo =1.16 km + In (A.)

which is generally about the same size as B.

If we define the dimensionless variables, -

(z-zo)

= 2 (A.12)

S

and

E 1 (A.13)

the Munk sound speed profile is found to be

'(z) = c(zo) exp[ (L+e-1-l)] , (A.14)

or, for small c,

C(z) : -(zo)E + -(A+e-"-l) + O( 2 4)] A.15 2,4
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APPENDIX B

We write our three-dimensional particle velocity due to internal

waves u.i(u,v,w). In keeping with standard notation,4,25 u is not the

magnitude of u,, but rather its x component. Thus

(f+u(f + - =0 ,(Bl

x 0

(fxu.) --- ,(B2S

w -+ (fxuj) +- 1 0p B3
Ttz 00 9z i0

-4+ w- 0(B4
;t (B.4

V = 0 .(B.5)

From (B.2) and (8.3),

32 fxu. -L(x.
3,32  3; v + z -1 z ' -1 y

t 7yzy2 3

L __ _7 (B.6)
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+- u(fu. -z - -x- f~

ii (fxu.) (8.8)
DOt -- 1tX

and

-1 . 2-V (x (B.9)

0 3y dLy

Using the incompressibility condition (8.5),

_~2w) + 2(fx. -l z 7z [v (fxu.)]

+ ~-(fxui) 0 .(.

We now define the vorticity t,

e :vxu .(1)

104
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Thus

7.(fu. =-f* - e(B. 12)

and

v(f) (f - t) + V * [,,(7x (f x.))] (B. 13)

This last term involves

z[7. (fx) ~(f* -'7 v (f -)u .(B.14)

* Thus

(7 pw) +(f f + v

2 22

2 2 2

NI 2 0(B.16)
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0

Thus, differentiating (B15 with respect to time and employlni -.he

incompressibility condition (B.5),

2(7 w) N N(Z) ( f atw+

N2(z) a2 +_
g [t az - at ataz Z

The vorticity equation, which is the curl of equations (B.1),

(8.2), and (8.3) added together, is

-Vx (fxu1) + 7 X, (112.I (B.18)

and, since

V x (fu) = -j (f -V) 2i ,(B.19)

we have

at2 (V2w) + N2 (Z) ( 2 + 2 ) + (f 7)2w

-a-ta aw

+ f * (f.V~u f a2  ( xu. 1-i .. 0

9 1 0

2..
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APPENDIX C 0

Much of the following discussion of Markov Processes comes from

Ludwig Arnold's marvelously lucid book and from lecture notes given by

Werner Horsthemke.57  More mathematical detail than is given in the 0

discussion here may be found in these references.

The Markov property of stochastic dynamic systems says that "if

the state of a system at a particular time s (the present) is known, 0

additional information regarding the behavior of the system at tiries t<s

(the past) has no effect on our knowledge of the probable develooment

of the system at t>s (the future)". 58  "

As an illustration, let us consider a discrete system, a machine

which at the touch of a button chooses at random an integer from the

closed interval [0,9]. This machine's inner workings will act so that - .

the probability of getting any particular integer at the next push of

the button depends only on what the last number was, and not on any of

the numbers given before that. For example, say I have pushed the S

button three times at times t,, t2 , and t3 with the resultinq sequence

(9,4,6). Now, knowing that the last value was 6, the probability of

getting a 7 is, say, 30%. That is, S

P(7,t4 16,t 3) : 0.3 (C.l)
4 3

Let us also say that (C.l) would have also been true if my previous

trials had given (1,2,6), (S,5,6) or any sequence ending in 6. Then,

our machine has the Markov property.

107-. • .o- ..
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As an example of a non-Markovian system, let us say that in order

to get a 7 after a 6, it is necessary to qet a 5 before the 6 and, - -

having gotten this 5-6 combination, I still have a 30% chance of qettinq

a 7. Then

P(7,t 4 1(6,t 3 ),(5,t 2)) 0.3 (C.2)

and, for example,

P(7,t 4I(6,t 3),(8't 2)) 0.0 (C.3) -

It is pretty hard to get a 7 after a 6 in this system! But the lack of

the Markov property is clear; knowledge of the past improves our

prediction for the future. (Note: We do not consider the so-called

"higher-order Markovian systems" to be true Markov processes.) . . -

Notice that it is not necessary for each trial to be totally

(statistically) independent of all of the others for the system to be

Markov. The Markov property simply states that qiven a set of trials

and outcomes, ((Xn tn),(Xn l tn -0 1,...,(xl,tl)),.

P(Xn+l'tn+ll(Xn t n ),(x n-1 t n-09,...,9(xlttl))= P(x n+1 t n+llxnlt n)  9

(C.4)

P(xn1 ltn+lIXntn) is called the "transition probability".

The Markov property can also be true for continuous systems.

Since we are talking about stochastic systems, we must be more specific

about what is meant by "continuous", and that necessitates the concept 9 .

of a "transition probability density". Consider a one-dimensional

108
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system. If we know the transition probability P(B,tlx,s) that the

system will be in some interval 8 at time t if it is in state x at

time s<t, the "transition probability density" D(b,tlx,s)(if it exists)

is defined by

.1

°fd . -13

P(B,tjx,s) db p(brx,s) (C.5)
fSB

We shall be concerned with systems that are continuous "almost surely":

ts t-s dyp(y,tlx,s) = 0 (C.6)

I y-x >E.

That is, as the length of time between measurements decreases to zero,

the probability of finding the system in states separated by some

difference E goes to zero more quickly than (t-s), no matter how small .

is. We are finally in a position to define a Markov diffusion process... .

A Markov diffusion process is an almost surely continuous Markov process

2where the "drift" f(x,s) and "diffusion" 2 (x,s), given by

f(x,s) = lim dy (y-x) p(y,t x,s) (C.7)t+s f y-x 1,<F . . .

2 1 C2g (x,s) = lim dy (y-x) p(y,tlx,s) (C.)
tIs y-x j,<C
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exist. In many cases of interest, such as the cases we consider, the

cutoff c can be extended to the entire range of y.

The importance of these processes lies in that, since our system

is a Markov diffusion process, we can immediately write a (backward) S

propagation equation for the moments. Often, as in the cases we

shall consider, we can immediately write a (forward) propagation

equation for the transition probability density, or "Fokker-Planck"

equation:

dp(ytlxs)1 '2 g2
Sdt - -y f(y,t) D(y,t x,s) + _2 g (yt) P(ytlxs)

(C.9)

Now the reason our system is called a "diffusion process" is clear from

. the form of the Fokker-Planck equation, which is that characteristic of

deterministic diffusion equations.

More general treatment of these concepts can be found in excellent S

53 9 59
books by Stratonovich, Arnold, or Horsthemke and Lefever. In

particular, we shall need the Fokker-Planck equation analogous to

Eq. (C.9) for a system involving several coupled processes (the acoustic 0

normal modes). Kohler and Papanicolaou have shown the usefulness of

the theory in acoustics and we shall apply it to the special case of

acoustic propagation through a field of internal wave-induced sound -

speed fluctuations.
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. . .

• .:......-..............-..:.........:.....-.....................-



- -4

APPENDIX D

In terms of the components of A, Eq. (5.28) becomes

0.

dp(A'Ad*;cyA°'A;a)- lir T ds dt <V nm(t)Vn'm,(S)>

n'm' n S

E~..A•1 --a. AA•

+ nV Ann (s)> -- m A A nl
+Vm(t)Vn'm'(S A*> n n'm "~ D-m n n'

nm n mDn ' Am nm

+<Vn(t)V*. (s)> a A A*1nm m n m  n Ann'T::!:.:;

mm
n - 21

+<V* Mv (s)> ;o (D.1)nm<V(t)Vn,m ,~) a AnA n , p(AA*;3 IAA_; o) , (D.1) J'.i'i. ..-".

mm nJ -

with p(A,A_ ;ao ,A 6(A-)6(A*-A

To get a propagation equation for <Ak> , we multiply (D.1) by Ak

and integrate over A and A .Integration by parts gives us

: d<A k > 1i Tf0°+T s
-<> - ds dt<Vm(t)V (s)> <An> n

•c -t T n Mn n m -.0
mn fa 0 '"'

An (D.2)

3 .9
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Frooi Eq. (5.14)

4H H
< V (t)V .(s)> - d z) (zct W t(Z')Q W(z)

nm n m 2 n m n m

.(Z)r C ) <6c(t1z)6c(s'z')> e i(km-kn )t ei(km 1-k n .)S (0.3)

c(z)cE (z

If s and t are in the same direction, i.e., the line connectinq source

and receiver,

*<6c(t,z)6c(s,z' )> 85 22(o)2 N f N2 z)N (zI)

xfT/ df N(n2de )dIf da a~* f 242)'xQ e iacose(t-s)

2 2 3

where n z' =lz- Z'x N(I and the other

quantities are defined in Chapter 3.

Let Ak =k -k, Ak2=km1-kn Consider

I o f%+T J 1 i~ cs+k )t i (A2 -occos e)s

0 0
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i(Ak +Ak )aO e -A,+k2) 1) 1
(Ak1+E2)T (ccose+Ak 1)

i (Ak +Ak 2 a3 e i(Ak 2 Ocose )T (- 5) '05

+e2 (ccoso+Ak ) (Ak -cOcose)

10 Now we consider the a integration. Because of the operation lirn1liT,
T c

only terms which vary at least linearly with T will survive. Hence,

we exhibit only results of the a integration which meet that criterion.

From Eq. (0.5), I consists of two terms. Consider the first
ILS

* ca integration,

e i(Akl+Ak 2)T ()iA +k2GCoseak 1)
Ii - (Ak +Ak2  - e i(k+k 2 %o 2 2) ~ X

(D.6)

The only way that I can be proportional to T is if Ak =-Ak. Thus

co -c 0'*__ -cos[cL XL~) I (Ak +Ak) (0.7)S

Ak1  2

Note that the pole at cc cs appears to lie on the real axis.
ose

However, the quantity Ak1 will have a small imaginary part if the ocean

is slightly absorptive. We will use this imaginary part to lift the

*pole off the real axis and then, after evaluating the integral, let

this imaginary part go to zero. Since Ak =k nkn "k1 will lie in the -2
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fourth quadrant of the complex plane for n>m and in the second quadrant 0

of the complex plane for n<m. Thus,

-OtC iAk] X 4/cose c-;k:

iAk I e *X+ o ke cos
I= -(Akl+Ak 2 )TrT 2 *, n<m , (0.8)

1i 1 2) 2 ~ D

('C COS2 -iAk X /cos
iAk e -a e cose, n>m

I1= -6(Akl+Ak2 )TrT2 * 2 c
(a cos e+Akl)

The second a integration is

i(Akl+Ak2)cof d . cos (k 0 -e .(-- ("D"c"e--

cosoC e +2(+ cok.

The only way (D.10) can be proportional to T is for the inteqral to

contain a double pole; i.e., Akl=-Ak2.

Now we see a problem. In Eq. (9.19) the quantity X(Q) varies from

zero to infinity before we take our limit T-. We would like to -

evaluate 12 by contour integration and the relative sizes of Tcos,

and X will make a difference in the way we close our contours. Thus,

we must consider Eq. (D.4) in order to estiwate the ,Q inteqration _

T
. between - coso and X- c.
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N dP) ( 2 
2  1/2

f d L cO

(Qf 2  osoc 112)

* 0

Def ine

co (X) (2( 2 1/2
Re X 2 *2 3~---- Cos aX) - , (D.12)

fTcose (OC +a-XM) Q (W

Rem f5 os dX tN f2 x(D. 13)
(.N +X f2(N t +a X)

For f«<N but not zero, we have for nonzero-

Rem < tN __ (0J.14)
'~A4\cosq/

* and for c0O

N2 2
Rem 2f 2  Toe(D.15)

ISince can be no larger than the depth of the ocean, the remainder Rem

-is definitely small except in the region of ."=7/2.
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Let us define a small quantity such that Tcos. fcr

0'<<7/2-6 and X>Tcose for 7/I2-6~<<n/2.

Then, dropping the terms independent of T,

000

I-oco~z+')( + Sk)

/ -os

CO-o

<< Tr/2 de d T (e f XoTcos ) + e ... cos') 1(D..16)
2fr/2-6 (2+ 2)Q + ckl 2

and

cos-Cos(A :s o

To 
/2  ic2 oo/ - so . { 2 c~ ( X

de 12= i 2(Akl+Ak2) d'

o• cos 2 2 .

+1- 0(1) + H (117)

We may therefore ncglect the remainder term for very small

Physically, we expect this. The integration orocedure combined with

the limit on T picks out of the internal wave soectrum those radial

wave number components (components in the direction of acoustic

propagation) equal to Ikm-kn . By neglecting the term 0 5 we say

that internal waves traveling in a direction orthogonal to the direction

of acoustic propagation do not cause scattering of energy amonn the -

116
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acoustic depth modes. That is, the probability of finding internal

waves with infinite wave number is zero.

If we impose the condition that acoustic eigenvalues k along with

their sums and differences exist uniquely, then0

f k1 A2)= 6nm'6mn' (.8

and

d<A >
kc 1 1 >I(amk-ib) <A > ,(0.19)

where

a = (\ 2 2 ) N f O [H[ H (z'~o ) (mk ~2\ o kkkJ m k S)

X mZ)kZI N (z)N (z) C ~)d (p-12 -

~2 z) (' N(n) f

f Tr/ 2 o s e c o s [ ( k -
k ) ~ ( )

d e -, T- +(k-kks ] (0.20)

and

8k - -(0 f<4(of>HrJfH
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N2(z)2() N(n) 2 2 1/2

::2 (z)FE2(z' )N(n) f 7f(sf

TT/2 k~-k r k i -1f -/ k _ e + otcosesifl L kkX.U(2)

0 [cose+ (kMk k) 2]

Equation (0.19) has the solution

< exp A <- )> D.22

where __

Ak= (a mk-ibmk) .(D.23)

m

INote that even with the oscillatory terms a mk >0 and is symmetric in m

and k while b mkis antisymmetric in m and k. Note also that A k is

independent of c0
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APPENDIX E

Consider

2 sin[' (Aq+Aq') daf7 do f 27d4pP( ,nrj) ros(,, X)

x e i(Wq('e Acspe- ,csp E

Since -,'q, Aq' are integers, the expression (E.1) is equal to

3. d( FdVoP-,;n) cos(rlyX)
-) 0 0

xei--o cos(Aq~o) ei,-tcoso' cos(. q'&p) . (E.2)

fT, I AlCOSO ..~ -1 fdi eLc0cos(~~

+f dPe'1-co5P cosq) . (E.3)

In the second integral, let so

119



-00

+ COs(AqTr 7/ dq' e ictocosp cos(AqP) (E.4)

fO

If we perform similar manipulations with the q,' inteqral,

8 sin[g (/-q+Aq' TT o2

(Aq+Aq') - fo0  0

x [eiacosp Cos(Aqqp) + cos(AqT) e i ct o cos(Aq)_

cos(Aq' o') + cos(Aq' r) eiYtcO s( ' cos(Aq'p') .- "-

(E.5)

Since P(,, ;n) cos(c X)is even in cc, the integration over c will have

nonzero contribution only if Aq and Aq' are both even or both odd.

However, if they are not also equal in magnitude and opposite in sion, .

the sine term will vanish. Thus,

Aq =-Aq' (E.6)

* . and
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2 sn[~.(A+A') fdaf do do P(oa,Q;n) COS(ayX)

(Aq+Aq') o 0 f,

fo 0

i(~Aq'') iccCoso - tcosq"

(E.7)
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APPENDIX F

Consider the expression

fc 0+T dsf -t da~,,, cos(a X) e iad5co5pOtcow')

0 0

x e ikIse exp~ e-xj AQ F1

Ijim 0 dsf dtf dcuP(ax,Qmr) cos(c,X)

20 2

iocscoWq -iatcosp' i(Ak s+Ak t) A1
xee e 1 2Q +-Q

(F.2)

The j=l term is

T coso _,0

+Tdsd is(Ak +occosVp) it(Ak -ctcoso') 1 Q2  2

-f sfd et

(F.3)
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0

-M 2r T daP(aP,;r) cos(a X)

22

2-ios' -A i (tAk,+tcos9o)) ji E[i (cyoT) (Akj+Ak 2+aLcOsCP-Cos~' J)

-i a 0 (Ak1 +Ak+tcos(-cosP' I)I

2 (k 2 -ccosq"')Go

2i~i~k2 Eicos ~a - +T)(Ak +OLCOS()] Ei~ia (A +CCCOSO)j
0 0

2i(Lk 1+cos)Eii(k-co')J

i o(kAi + o(C) , (.T)

2~ 0
e0

A123 + - i~i~T +)(Ak-otos~p)] i~ia(,S

.i A +ac so 0.. . . . . . . . . . 0. . . . . . . .

- .. .* *. .. .. .. .. .. .-. .. -. -. .-* -. *- *-. .z .. ~.-.* ~ ~ (F- .4)



Thus, in taking the limit Tt-, the j~l term and, similarly, the jP2 0

terms vanish as long as LQ~ and AQare finite.

1 2

40

124



2 APPE'IDIX G

From Eq. (6.22) and the results of Appendix F,

d<A k j A k 1 rn 1~.'A .6 > I

do lmT 1 AnkA'Vjp' q-+q' 6' pj 6pc

-2<A jA*1 >

23 nq nq mk p mk' pj p',q'-q+p

n+J <A 1  >mk 'pj 'm 'kp 'j p',q' 
-q+p(Gl

We will consider each of the 2.'s in turn.

4 Nf 2 7 2 H (H
=~~ N f i~O~(0)> dpf d'P' dz Idz'o(z)o(z')
£1 2 4 (gI kk f Jo JO o

m nm n

K:x (z)t%,(z)PnI(z')1M,(z') -C2N) 2()gn)

cc 2fl/ (ci. +cc~
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f0 0Td d

i(k m-k n)s i(k m -k n.)t iaso~to~'

x e e e e a sPtcs%' (G. 2).

Again we see the operator evaluated in Appendix D and

lrnim <A A*. l> 6 , 6 *6 ,. 5.
Ttoo T mpnq I nq kj p ,q-p+q' rk p'jmn pq'

- (mk imk) <A kjA*,j.> (G.3)

m

* The second term is the complex conjugate of the first with an exchange.

of indices (k,j)+-(k',j'):

.im1 ..2'<A* A .6 .6 16mkpj 6 'qpq
T~m~ nq kj> mn pq k'pj6,qpq
S mpnq

(a~ ibmkI<AjA I jI> (G.4)
E m

Calculation of the third term is a bit trickier:

23~L <A A* >6 6 6 .6,,mpnq 3 nq n q mk pi m kf p .j p',q'-q+p-
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*~(k Nof < > d0dPf dzf dz'p(z)p(z')

I0
nq "--"'-.-

Wn(Z)k(Z).(z')ok'(Z')N2 (z)N 2(z') fN (n )d ~ cs X -

2 -I dQf dax cos (a~XV/k nk k kn k k, " 2(z )c-2(z')N(n) f0

0'_2)/  , + fds dt e i ( j - q ) p e-i 0 -q ')P-

3 '-T +2
0 0

00

kkn k' eia(scosv'tcoso')<A A*,, > .x e e e < -nA
n'q' -> q -q

(G.5)

A similar term is obtained for the fourth term. It is here that

excitation of the azimuthal modes is explicit. Even if only the

azimuthally symmetric mode is initially nonzero, all of the other

azimuthal modes are excited as long as j-j' is zero. This null

difference between j and j' is maintained throughout the entire field

of propagation and the expression for <!2> , for example, becomes

2 2 2 Ajkj
<Ipl2> :A k(z) k,(Z')

k, vk k

exp i kk-kk,)r + (G.6)kk f - (G.61
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That is, for an azimuthally symmetric source, the different azimuthal

modes are uncorrelated to first order in E.

After much manipulation, we find that

d <A jAk> 1'[(m.

do (a -k a kmk'~ + i(b k'I b k)J<A k.A k'j>

d dqj(<A A > A< > A*.7)

mmk mq mq m q mq -

qS

where the sums over m and m' are restricted such that kkkk-k 1kkt -kI -

and that (k k -k m) has the same sign as (k k k m) The quantities

* mkml k' are given by

qj 1w4 2 2 rH H m(z),tm'(z') k(z) I(z')
d iL()2 N f< (0)> ____________ dz mmkm'k' (gq 0 J0 J k 1mm k'

X N2 zN 2 (zI) Q(Z)Q(Z )f N(ndo (.,2_f2) 1/2 A
c (z)c2(z')N(n) Jf -

dPcos~pcos[(j-),P] cos j-q)cosl(Vk Cos~)

cos (kikm (G

.k -k.

k'..* %~* ; .m ... . . . . .

. . . . . . . . .. . . . . . . . . . . . . . . . . . . .
- - - - - - -- - - a- 2a. cos 2a. . . . . . . . . .G.8



The expression (G.7) is prohibitively difficult to calculate since

the dmIk terms would have to be evaluated M (2L+1)2 times 'n order

to specify the propaqation of each <A kjA kj> term! However, much

information can be obtained about energy transfer without actually
sovngfr ah<AkiAk> . From Eq. (G.6), we see that 1

(and also <1i>) contains terms

If we sum Eq. (G.7) over j] we find that

dwk 2
d 7 mk (wm- (GA

m

if k=k' and

d <A j A*.J j .> [(a +amkl + (bk b k] < AkjA .>

for k~k'.
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APPENIDIX H

Evaluation of the Frequency Integral

Usinq partial fractions,

1 1 + 2 21 2i
(X +K ) (x2+Q2  (Q2- 2)x2+ 2  (Q2-K 2)[ 7X(x-0

So,

f dX X cos(GX) 1 X +Ks ) S

(X2+K2  (x +Q) (22+

+ i---- dXXcos(GX) - 1 JdX csGX)(H2
2 2Xcos

2QK 2 o (X +Q) 2_-K 2 (X + K

We integrate the first term by parts. Then, with the help of Gradshteyn

and Ryzhik,60 6

f 00 X cos(GX) 1 - G 2 [eGK E(K-eGK E(G)

J X 2 2 2 2 2 2(Q2 -K 2)K 2  4K(Q2 _K2 [e)(K e E -K
0 (X +K )(X +Q)

+ 1 [e -GK Ei(GK) + e GK Ei(-GK)]

2(Q2_-K2)

1 2 [e-GQ Ei(GQ) + eGQ Ei(-GQ)] .(H.3)

2(Q2-K2
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FS

For G-0O, (H.3) becomes

f dX 2+2x 2 Q) Q 1 22 + 1Q 2 (in K -in 0) (H.4)0

Contour Evaluation of the Integral when G=O

The integral of interest is

CO

II dX - 2(H.5)
f 2 22 2 2
o (x +K (X +Q)

Consider instead the integral

12 =fdz 2i (H.6)

(z +K )(z +Q)

where we choose the contour as in Fig, B. Thus,

I r r n r +4f dr in r + 2T-ri) (H.7)
2 f2 22 222 2 2 2 20 (r +K ) (r +Q) (r +K) (r +Q)

The in r terms cancel and, since

-2'riI 1  2-i ~jResidues (I (H.

the result (H.4) follows immediately upon evaluatinq the residues of I2
2*S
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